
Understanding Behavior of Business ProcessModels?Pablo A. Straub and Carlos Hurtado L.Departamento de Ciencia de la Computaci�onPonti�cia Universidad Cat�olica de ChileVicu~na Mackenna 4860 (143), Santiago 22, Chilestraub@ing.puc.cl churtado@ing.puc.cl1 IntroductionBusiness processes have intrinsic parallelism given by the relative independenceof some activities. Parallelizing a process might \dramatically reduce cycle timesand the resultant costs" [5], but it might lead to anomalous behavior, like dead-lock or useless activities. There are three main approaches to avoid behaviorallyincorrect models, a notion that is not even well de�ned: 1) Build a model andthen verify its properties (e.g., building the space state, or �nding net invari-ants [2]). 2) Build a model that is correct by construction (e.g., using activityannotations [1] akin to parbegin parend pairs). 3) Use only small models by ab-stracting models and submodels. The �rst approach does not explain why orwhere a particular model has behavioral problems. The second approach con-strains the forms of parallelism: it is impossible to model a PERT chart. Thethird approach is just a rule of thumb that may lead to oversimpli�ed models.This work intends to: de�ne a notion of correct behavior in business processmodels and give a framework to allow behavioral analysis.2 A Notion of Correct BehaviorWe use our Copa notation [6]; it is easy to map concepts presented here intosimilar languages like ICN [3], Action Workow [4], VPL/Rasp [8], whose be-havioral semantics are de�ned in terms of Petri nets. Fig. 1a shows a simple butanomalous process model. Connector x splits execution in two parallel activities(a and b). Activity a proceeds to c while b may choose to proceed to either c(causing a deadlock in y) or to connector y (synchronizing with c).The semantics of Copa is given by a Petri net obtained by translating eachelement of the model and connecting corresponding elements (Fig. 1b). Allowableinitial states have a single token in one input socket and no other tokens.One basic property of a good model is that it does not deadlock, that is,each process of the model reaches an output socket. Another basic property ofa good process model is single-response, that is, each enaction of the processproduces exactly one output. Process models can su�er from prescribing too? This work is funded in part by CONICYT through project FONDECYT 1940677.

b

c

x
b1 o

ca

i i’ xi x
b

y

a1

b2

c1

yc

yb

a

y
i

o

(a) (b)Fig. 1. Example of a Copa net with an anomalous process model.much work, so that some activities are unnecessarily performed, because in someparticular execution no output socket depends on them. For example, if therewere a connection from activity b to output socket o in Fig. 1, choosing thisconnection would render a and c useless.Given a process modelM whose set of output sockets is So:Property 1 (Deadlock freedom) A �nal state Mf is a deadlock if for all so 2 So ,Mf (so) = 0.M is deadlock-free if none of its �nal states is a deadlock.Property 2 (Single Response) M is single-response if all �nal states Mf satisfyPso2So Mf (so) = 1. It is multiple-response if there is a �nal state Mf such thatPso2So Mf (so) > 1.Property 3 (Usefulness) An activity a is useless within a process (in the senseof Petri nets) of M if there is no path from a to an output socket. A processmodelM is useful if no activity is useless in any process.Property 4 (Simple control)M has simple control if every �nal state Mf satis�esPso2So Mf (so) = 1 =Pp2P Mf (p).Simple control implies that if a model begins with a single token in one ofits input sockets, it ends with a token in one of its output sockets and there areno other tokens. Simple control implies the other properties [6].3 A framework to understand control propertiesIn a sense, simple control means \at the end there is exactly one token". Placeinvariants capture the idea of having the right number of tokens in a system. Aplace invariant I is an assignment of weights to places such that for any transitiont , the sum of the weights of its predecessors equals the sum of the weights of itssuccessors, thus the weighted sum of their tokens is constant [2].Theorem1. Let I be a positive invariant of a process model with an input socketsi that has a path to an output socket so, then if I (si) 6= I (so), the initial statethat has a token in si leads to multiple response, an overloaded state, or deadlock.A necessary but not su�cient condition for simple control is the existenceof a positive balanced invariant (i.e., all sockets have the same weight). Theexample has a positive balanced invariant but it may deadlock.

A theory of threads of control whose results are proven in [7] is an extensionof the work on invariants. A thread of control captures the idea of parallel sub-processes within a process. Unlike the usual sense given in operating systems,our concept of threads is static. Within a process model, every activity shouldbelong to one and only one thread; to tell which one, we propose a labeling thatassigns a set of thread labels to each place or transition.De�nition2 Model labeling. The labeling of a model is a function � fromnodes of the net to sets of labels, de�ned by: 1) The only label for an outputsocket is 1. 2) Each label of a transition is computed by adding a consistentset of labels2, one from each successor. 3) The label of a place p that doesnot correspond to an output socket is computed by multiplying a label from asuccessor t 2 p� that leads to an output socket, by �(t ; fpg).For example, part of the labeling of the model in Fig. 1b is: � (o) = f1g, � (c) =f1
 �(y ; fycg)
 �(c1; fcg)g, and � (b) = f1
 �(y ; fybg)
 �(b2; fbg), 1
�(y ; fycg)
 �(c1; fcg)
 �(b1; fbg)g.De�nition3 Label equivalence. Label equivalence, denoted :=, is de�ned by:1) � is commutative, 2) � and
 are associative, 3)
 distributes by the rightover �, 4) �(t ; x)� �(t ; y) := �(t ; x [y) if x \ y = ?, and 5) x
 �(t ; �t) := x .A thread is a non-empty equivalence class of labels. A labeling � such that alllabels assigned to a given node x are equivalent de�nes a threading . We usuallydenote a thread by a label (one of its members). Threadings are non-numericinvariants [7].From de�nition 3 we see that the example has no threading because activityb belongs to two threads of control, namely 1
 �(y ; fybg) and 1
 �(y ; fycg).This fact implies the model has control anomalies.De�nition4. A threading is balanced if the thread of all input sockets is 1.A model is balanced if its threading is.If a model is balanced, in all reachable states M the summation of the activethreads (those that have a token) is 1; besides, only one activity is executingin a thread, that is, M marks at most one place in the same thread. The mainresult from this theory is that threadings capture our notion of correctness:Theorem5. A model is balanced if and only if it has simple control.There are three possible causes for not having a balanced threading, whichcan be interpreted in terms of behavioral properties. First, there might be aplace with no labels. If a place in the model has no label, this implies thereis a proper trap in the net (i.e., a set of places that once they receive a tokenthey always have some tokens [2]) and the model has an overloaded state, unlessa deadlock upstream impedes reaching the trap. Second, there might be two2 A set of labels is consistent if all occurrences of a place refer to the same transition.

unequivalent labels for a place, which means that this place is an activity whoseoutput sockets are connected to di�erent threads: this implies either deadlock oroverloaded state. Third if there a threading, but it is unbalanced, then Theorem 1applies [7].4 ConclusionThere are two reasons to use simple control as a notion of behavioral correctness.First, it implies there are no control anomalies, like deadlock, useless activities,and multiple response [6]. Second, a simple control model behaves like an activ-ity; this allows consistent or-abstraction in which a process model can be usedsafely within a larger model. Or-behavior is the most commonly accepted fromof model abstraction (as in, e.g., ICN, VPL/Rasp, Action Workow).Simple control is related to other behavioral properties of free-choice Petrinets. In fact we prove in [6] that a model has simple control if and only if aconnected free choice net derived from the model is live and safe in the sense of[2]. This implies in turn that simple control in free choice nets (i.e., in all Copamodels) can be decided in polynomial time.Our framework formalizes threads of control in business process models andrelates them to behavioral correctness, by demanding that threads of control beadequately combined. We have recognized several applications of thread theorywithin workow models: diagnostic of why a model might fail, model building,advanced exception handling, unanticipated exceptions.References1. Giorgio De Michelis and M. Antonietta Grasso. How to put cooperative work incontext: Analysis and design requierements. Issues of Supporting OrganizationalContext in CSCW Systems. L. Banon and K. Schmidt, August 31, 1993.2. J�org Desel and Javier Esparza. Free-choice Petri Nets. Tracts in TheoreticalComputer Science, Cambridge University Press, 1994.3. Clarence A. Ellis and Gary J. Nutt. Modeling and enactment of workow systems.In 14th Int'l Conf. on Application and Theory of Petri Nets, June 1993.4. Ra�ul Medina-Mora, Terry Winograd, Rodrigo Flores, Fernando Flores. The ActionWorkow approach to workow. Management Technology Proceedings of CSCW,November 1992.5. Michael Parry. Reengineering the Business Process. The Workow paradigm,Future Strategies Inc., ISBN 0-9640233-x.6. Pablo Straub and Carlos Hurtado L. The simple control property of business pro-cess models. In XV Int'l Conf. of the Chilean Computer Science Society, Arica,Chile, October 30th to November 3rd, 1995.7. Pablo Straub and Carlos Hurtado L. A theory of parallel threads in process mod-els. Tech. Report RT-PUC-DCC-95-05, Computer Science Dept., Catholic Univ.of Chile, August, 1995. In ftp://ing.puc.cl/dcc/techReports/rt95-05.ps.8. Keith D. Swenson. Visual support for reengineering work processes. In Proc. ofthe Conf. on Organizational Computing Systems, November 1993.This article was processed using the LaTEX macro package with LLNCS style

