
ON WORKLOAD CHARACTERIZATION OF RELATIONALDATABASE ENVIRONMENTSPhilip S. Yu, Ming-Syan Chen, Hans-Ulrich Heiss and Sukho LeeIBM Thomas J. Watson Research CenterP.O. Box 704Yorktown Heights, NY 10598AbstractAs relational database systems become increasingly popular, there is a clear need to betterunderstand the workload so systems can be designed or tuned more e�ectively. A RElationalDatabase Workload AnalyzeR (REDWAR) is developed to characterize the workload in a DB2environment. This is applied to study a production DB2 system where an SQL trace for atwo hour interval and an image copy of the database catalog were obtained. The results ofthe workload study are summarized. Here we focus on the structure and complexity of SQLstatements, the makeup and run-time behavior of transactions/queries, and the composition ofrelations and views. The results obtained provide the important information needed to build abenchmark workload to evaluate alternative design trade-o�s of database systems.Index Terms: relational databases, workload characterization, DB2.1 IntroductionAs relational database systems grow increasingly popular, throughput and response time require-ments are becoming ever more stringent [1]. There is a clear need to understand the workloadso systems can be better designed [2]-[6]. The workload has implications for both software andhardware designs. For example, query optimizers often make assumption of uniform distribution ofattribute values in access path selection [7] [8]. In the presence of data skew, where certain attributevalues are more popular than others, the uniform assumption can lead to non-optimal access pathselection and degraded performance [9]. Furthermore, the access plan of a query is often generatedbefore execution time to reduce run time overhead [7]. However, the frequent occurrences of inputvariables (whose values are determined at run time) in the predicates of SQL statements wouldsupport the adaptive approach to access plan selection in [10]. Although a debit-credit type bank-ing workload has often been cited to compare transaction processing systems [11], the workload isvery simplistic. Consequently, to examine workloads in other application environments which canbetter reect in general the functions and capabilities of a relational system is very important forus to evaluate various design issues of database systems, and is thus taken as the objective of thispaper.Using a RElational Database Workload AnalyzeR (REDWAR), developed at IBM Research, westudy in this paper the structure and complexity of SQL statements, the makeup and behavior oftransactions/queries, and the composition of relations and views in a DB2 like environment. AsSQL statements can be quite complex, we study the SQL statement composition to analyze thepercentage of SQL statements having each type of constructs like WHERE, GROUP BY, HAVING,1



ORDER BY, subquery, aggregate function, etc. The number of predicates in the WHERE clause,the distribution of the predicate types and operand types, and the number of columns in theSELECT clause are analyzed. The numbers of relations in the FROM, the GROUP BY andthe ORDER BY clauses, respectively, are also investigated. The view de�nition can be similarlyanalyzed. The transaction statistics gathered include the number of SQL statements of each typeexecuted, the number of tuples scanned and retrieved/updated/inserted/deleted, the number ofpages accessed, and the elapsed time for each transaction invocation. This provides all the necessaryinformation to build a benchmark workload to evaluate alternative design trade-o�s of databasesystems. We then apply REDWAR to examine a production DB2 system which runs an accountingtype application in a petroleum company. In this environment, a large number of the transactionsare to query the database and generate reports. Besides the batch update to refresh the database,there are also on-line updates/inserts/deletes. An SQL trace was collected for a two hour intervalduring peak period and an image copy of the DB2 catalog was also obtained. Note that althoughworkloads in di�erent environments may vary, this accounting type workload investigated doesprovide a real-life example of a production DB2 workload in a major application environmentwhich is di�erent from debit credit, and can serve as a good testbed for REDWAR.Relational database systems like DB2 provide quite a lot of information on the workload. Someof this is stored in the database catalog, providing various types of information on the relations,application plans and SQL statements. In DB2, SQL statements are precompiled into a DatabaseRequest Module (DBRM). One or more DBRM's are compiled and bound into an application planwhich contains a set of internal control structures representing the complied form of the originalSQL statements from which the DBRM's are built [12]. Here, we refer to each commit point ina plan as a transaction. Certain information is available at run time indicating the executionbehavior of each SQL statement, such as how many tuples have been scanned on the averagefor each quali�ed tuple retrieval. We shall explain the methodology developed in REDWAR sothat information scattered in the catalog tables and run-time trace records can be combined in ameaningful way to get insight on SQL statement structure and transaction behavior. Note thatto the best of our knowledge, there is no prior work, by developing such a software tool, to studythe structure and complexity of SQL statements, the makeup and behavior of transactions/queries,and the composition of relations and views. This distinguishes our work from others [3] [4] [6].In Section 2, the relevant workload information available from DB2 is briey discussed. Wedescribe our methodology employed in REDWAR to obtain and process this information in Section3. In Section 4, we apply REDWAR to a DB2 environment and present the workload analysis.This paper concludes with Section 5.2 DB2 Workload InformationDB2 maintains a set of thirty tables referred to as the DB2 catalog [13]. The catalog tables containinformation on table spaces (in DB2, to e�ciently manage storage, multiple tables can be stored intoa single table space), tables, views, columns, indexes application plans, etc. We shall mention a fewthat are relevant to our study of SQL statements and transactions. The SYSSTMT table containsone or more rows to describe the text of each SQL statement. It also contains information such asstatement number, and the name of the application plan. The order of multiple rows describingthe same SQL statement is indicated by a sequence number. The SYSVIEWS table contains thename of the view and one or more rows to describe the text of each view statement. The SYSPLANtable gives information of each application plan. SYSTABLES provides descriptions of each tableand view, such as the number of columns, the total number of rows (which is not available for2



views), the percentage of pages which contains rows of the table, etc. The SYSINDEXES tablecontains one row for every index and the SYSKEYS table has one row for each column in the indexkey indicating the numerical positions of the column in the row and in the index key, respectively.SYSCOLUMNS gives information on each column.DB2 also has a very extensive run-time tracing facility [13] [14]. It can collect all kinds of per-formance, accounting and statistical data. The tracing facility is invoked through a DB2 STARTTRACE command. The various parameters in the command specify the information to be traced.In the performance trace, one can speci�cally request the detailed events to be traced, e.g. subsys-tem related events, SQL related events, bu�er manager IO requests, detailed lock information, sortdetail, etc. For the purpose of this study, we shall be concentrating on SQL related events whichare provided by the class 3 performance trace. The SQL trace records provide information on starttime and end time of each SQL statement, the statement type (e.g. SELECT, FETCH, DELETE,OPEN, CLOSE, etc.), statement number, etc. It also collects run time statistics on tuples scannedand retrieved/updated/inserted/deleted. DB2 consists of various components, such as RelationalData Services (RDS) and Data Manager (DM) [15] RDS is responsible for materializing the externalview of data from stored data; DM manages all stored data by providing access to data. A tupleis �rst scanned by DM applying some search arguments (referred to as SARGABLE predicates)which are simple predicates of the form \column comparison operator value" [7]. If not rejected,the tuple is passed on to RDS where the rest of the predicates are applied. Certainly, overheadcan be reduced by rejecting unquali�ed tuples at the DM level. The SQL trace provides detailedinformation on the number of tuples scanned by DM, the number of DM quali�ed tuples, RDSquali�ed tuples, the number of pages scanned, etc. [16] [17].3 MethodologyNow we explain the methodology used in REDWAR to analyze SQL statements. There are severalissues that need to be addressed. First of all, consider the case of SQL statements involving views.As views are virtual tables which do not exist physically, views appearing in an SQL statementare replaced during execution plan generation by their de�nitions [12]. In other words, a simpleretrieval statement on a view may in fact be a complex join statement in disguise. Secondly, DB2has the cursor concept associated with the embedded SQL construct [12]. In contrast to COBOLand PL/I like programming languages which deal with one record at a time, an SQL statementcan result in a set of records. The cursor concept is introduced to address this issue. A \cursor" isde�ned on an embedded SQL statement so that one can issue a \FETCH" statement to fetch onerecord at a time based on the cursor. The FETCH statement is thus an arti�cial construct whichhas little to do with analyzing data manipulative SQL statement structures. However, the runtime statistics of the FETCH statement reect that of the corresponding SQL statement assumingthe application retrieves all quali�ed tuples. Finally, not all SQL statements are de�ned in theCatalog SYSSTMT table. Dynamic SQL [12], constructed during run time, would not appear inthe Catalog, but is provided by the class 3 performance trace during run-time [13] [14].The workload analyzer consists of two parts:� the SQL analyzer for analyzing the SQL statements and the catalog information,� the trace analyzer for processing the trace and gathering various run time statistics.Both of them use information from each other to provide an integrated and comprehensivepicture of the workload. 3



From the catalog tables, starting with processing the SYSVIEWS table, we analyze the SQLstatements in SYSSTMT. The view information is incorporated into the SQL statement analysis.As views can be de�ned in terms of other views, several expansions or substitutions may be requiredbefore we can express a view in terms of base tables and obtain summary information. Each timea table name is encountered in the FROM clause of an SQL, we �rst check whether it is a view. Ifyes, the information obtained from the view analysis is retrieved to be incorporated into the SQLstatement analysis. For example, assume the following view from [12] is de�ned in the SYSVIEWStable. CREATE VIEW CITYPAIRS(SCITY, PCITY)AS SELECT S.CITY, P.CITYFROM S, SP, PWHERE (S.S# = SP.S#) AND (SP.P# = P.P#)This is the usual suppliers (S), parts (P), and shipment (SP) relations used in [12]. The viewtries to create all the supplier city and parts city pairs related to the same shipment. In theSYSSTMT table, assume we have the following statement.SELECT PCITYFROM CITYPAIRSWHERE SCITY = LondonWhen processing the above statement, we need to realize that relation CITYPAIRS is a view,so this is not a simple retrieve statement with one predicate. It is in fact a three way join involving3 predicates.Whether in SYSVIEWS or SYSSTMT, the SQL statement can span multiple rows. We �rstsort the catalog tables so the rows related to the same SQL statement are contiguous. We thendevelop the SQL analyzer to collect structural information on SQL statements. Our analysis herewill concentrate on SQL statements for data manipulation. The data manipulation SQL statementsare classi�ed into �ve types: (1) \Singleton" SELECT, (2) UPDATE, (3) DELETE, (4) INSERT,(5) SELECT involving CURSOR (w/wo UPDATE OF). For each SQL statement type, we collectstatistics on the number of relations involved, the number of columns selected, the number ofpredicates appearing, whether subqueries appear, and whether aggregate functions are used. Wealso examine how often constructs like ORDER BY, GROUP BY and HAVING are included.The predicates are further classi�ed according to their types [13]: basic, quanti�ed, BETWEEN,NULL, LIKE, EXISTS, and IN. A basic predicate is used to compare two values. It takes the formof an expression followed by a comparison operator and another expression or a subquery (withoutANY or ALL). A quanti�ed predicate compares a value with a collection of values. It has the sameform as a basic predicate type except that the second operand is a subquery preceded by ANY orALL. An IN predicate is another way to compare a value with a collection of values. An EXISTSpredicate tests for the existence of certain rows. A BETWEEN predicate is used to compare avalue with a range of values, whereas a LIKE predicate is used to search for strings that have acertain pattern. A NULL predicate tests for NULL values. The aggregate functions used are alsoclassi�ed according to their types: AVG, MAX, MIN, SUM, COUNT(*), or COUNT(DISTINCT).The trace analyzer consists of two phases. In the �rst phase the trace analyzer �lters out alldynamic SQL statements and sends them to the SQL analyzer for structure analysis as describedabove. Having analyzed both the static and the dynamic statements, the SQL analyzer provides thetrace analyzer with some structure information, e.g., whether a particular statement implies a join-operation or if there are views involved. In the second phase the trace records are examined to collectrun time statistics. Statistics are gathered on either a per plan or per statement basis. Selection4



of a particular plan-ID, connection-ID, or authorization-ID is also possible. The identi�cation ofeach static SQL statement and its run time records is through its statement number, which appearsin the trace records as well as in the catalog table SYSSTMT. For dynamic statements, a uniquenumber is generated during phase 1 to make identi�cation possible during phase 2. For a FETCH,we need to use the cursor name to identify the corresponding SQL statement. The program can beparameterized to provide a variety of reports of di�erent extent and detail.We also made an attempt to analyze the number of tuples scanned before a quali�ed tuple canbe retrieved. We are especially interested in the case when the SQL is a retrieval type statement(not join) and index scan is used to access the tuples. The number of tuples scanned per quali�edtuple implies the e�ciency of the access path. Toward this end, the trace analyzer needs theinformation from the SQL analyzer to �nd out whether a large index scan is to be interpreted asresulting from retrievals with very selective predicates, or is caused by performing a join.4 Sample ResultsWe now present some of the information obtained after applying REDWAR to study the DB2workload mentioned before. The following subsections examine the table characteristics, transactionplan description, SQL statement structure, view de�nition, and transaction run-time behavior.Table CharacteristicsThe characteristics of the relations are �rst examined. The environment consists of 323 basetables and 567 views. Table 1 presents the average number of columns and rows, and the maximumnumber of columns and rows in a base table. Also shown is the average number and maximumnumber of columns in a view. The average number of columns over all base tables and views is 32.9.As views are derived dynamically at run time, statistics on the number of rows are not available inthe catalog. Among the base tables, 38.4% have no index, 33.1% have one index, 17.0% have twoindexes, 9.6% have three index and 1.9% have four indexes. The average number of indexes pertable is 1.03. The indexes are generally based on multiple columns. Fig. 1 shows the distributionof the column width in bytes over all base tables and views, where the average column width is 9.5bytes and the maximum column width is 4006 bytes. Most of the columns have a width less than20 bytes.Application Plan DescriptionThere are 305 application plans de�ned in the catalog. The average number of SQL statementsappearing in a transaction plan is 17, whereas the maximum number of statements appearing is551. We present the distribution of the number of statement appearances in Fig. 2. As we can see,90% of the application plans contain less than 20 SQL statements, with 51.6% of the plans havingless than 5 SQL's and there are a few with a large number of SQL statements. In Table 2, the SQLstatements are classi�ed according to their types. Both static SQL statements from the catalog,and dynamic SQL statements from the run time trace are considered. There are 5381 static SQLstatements and 459 dynamic SQL statements. Note that dynamic statements generated from eachinvocation of a plan are counted as di�erent statements. In static SQL close to 30% of the SQLstatements are data manipulative type statements, which are the SELECT, DELETE, UPDATE,and INSERT statements. Among those SQL statements, 75.9 % are SELECT, 4.7% are DELETE,7.7% are UPDATE and 11.7% are INSERT. Here the SELECT includes both the singleton SELECTand cursor SELECT. There are also a large number of OPEN, CLOSE and FETCH statements,which are the constructs used to retrieve tuples from cursor SELECT statements. Another 8%of statements are related to preparing and executing dynamic SQL statements. Note that theDECLARE statements here only include DECLARE TABLE and DECLARE STATEMENT, but5



not DECLARE CURSOR. In dynamic SQL, 96% are data manipulative type statements, and amongthose SQL statements, 96.8 % are SELECT, 1.4% are DELETE, 0.9% are UPDATE and 0.9% areINSERT. Among the data manipulative SQL statements, 47 (i.e. 2.9%) static SQL statements and82 (i.e. 18.6%) dynamic SQL statements reference views and all reference just one view.SQL Statement StructureWe next examine the structural characteristics of the data manipulative type SQL's. For staticSQL, Table 3a shows aggregate statistics for each statement type, where the column labelled C-SELECT means SELECT with cursor, and the column labelled S-SELECT means singleton SE-LECT. The total number of statements for each SQL type is given in parentheses. The aggregatestatistics include the percentage of statements with WHERE clause, GROUP BY, HAVING, OR-DER BY, and subquery constructs. The percentage of join queries are indicated after taking theview de�nition into consideration. We also indicate the percentage of multiple-record INSERTstatements (INSERT statements with a SELECT clause), the percentage of cursor select with FORUPDATE, the percentage of DELETE and UPDATE with cursor control, and the percentage ofSELECT queries involving UNION. Note that in INSERT statements, only multiple-record IN-SERT statements can have a WHERE clause, FROM clause, GROUP BY, HAVING, ORDER BY,or subquery construct. Thus all these statistics (except the one on INSERT with SELECT) in theINSERT column are presented relative to the mutiple-record INSERTs instead of to all INSERTs.Furthermore, in Table 3a, an \X" means not applicable. Table 3b shows similar statistics fordynamic SQL. Note that by de�nition dynamic SELECT must be associated with a cursor. Thepercentage of dynamic SQL with a WHERE clause appears to be low, as one of the frequentlyexecuted plans generates a dynamic SQL with no WHERE clause to reference a small table. InTable 4a we show the distribution of the number of columns in the SELECT clause. For INSERT,we only consider multiple-record INSERT, i.e. those with a SELECT clause. Also included are theaverages and maximum values. The number of relations in the FROM clause is shown in Table4b. When more than one relation appears in the FROM clause, join operations will occur. Asindicated by Table 4b, there are very few joins, mainly two-way joins and a few 3-way and 4-wayjoins. Table 4c shows the distribution of the number of predicates in the WHERE clause. Forstatic SQL, more than 90% of the WHERE clauses have less than 5 predicates and one predicate isgenerally most prevalent. Occasionally, a large number (> 10) of predicates may occur. DynamicSQL seems to have a larger tail distribution. The distribution of the number of columns in theORDER BY clauses are shown in Table 5. The number of statements with the ORDER BY con-structs are indicated in parentheses. GROUP BY construct only occurs in 8 SELECTs with cursorand 28 INSERTs in static SQL. Among these, 75% is on one column and 25% is on two columns forSELECT with cursor and 100% is on one column for INSERT. Table 6 shows the distributions ofthe predicates types. Clearly, the basic predicate type is used most often. For static SQL, the �rstoperand in a predicate is always a column name, whereas the second operand is generally (morethan 90% of the time) a host variable as shown in Table 7. For dynamic SQL, the �rst operand isagain always a column name, but the second operand is equally likely to be either a constant ora parameter to be speci�ed at execution time. Aggregate functions are not used in dynamic SQLand are used only occasionally in static SQL. For example, COUNT(*) occurs 6 times in CURSORSELECT, MAX 34 times in singleton SELECT, SUM 76 times in INSERT and 2 times in CURSORSELECT.View De�nitionWe next consider the view de�nitions. Among the 567 views, only 4 of them are de�ned interms of views: two with one view and the other two with two views. The structural characteristicscan be analyzed in a similar way as the base table and is omitted here.6



Transaction Run-time BehaviorWe now examine the execution behavior of SQL statements and transactions. In the 2 hourtracing interval, 24,364 static SQL statements and 125,428 dynamic SQL statements were executed.The average response time per static SQL statement is 27 msec while that per dynamic SQLstatement is 32 msec. There are 2438 transactions (plan invocations) out of 34 di�erent plans.Among these, 88.56% are read-only transactions. Table 8 shows the executed SQL statementdistributions based on SQL statement types for static SQL and dynamic SQL. We distinguishbetween PREPARE-c, which is PREPARE for SELECT with cursor, and PREPARE-nc, which isPREPARE for other statement types. None of the UPDATEs are cursor controlled as indicatedby UPDATE-nc. For CREATE and DROP, we use ts, t and ix to denote the target: table space,table, and index, respectively. We next consider the transaction/plan execution frequency. Thereare 7 \popular" transaction plans, each getting more than a hundred executions during the twohour period, while more than half of the plans get less than ten executions. The average number ofexecutions per plan in the measured interval is 71.7. Most of the transactions have a response timeless than a second, but occasionally there are large transactions with a response time of more thana hundred seconds. The average transaction response time is about 4.5 seconds. Furthermore, morethan 80% of the transaction executions issue less than 10 SQL statements. The average numberof SQL statements occurring per transaction execution is a lot larger (61.4), due to occasionaltransaction execution with a large number of repeated FETCH statements.The make up and average behavior of a transaction is shown in Table 9. For each statement type,the number of executions, the mean response time per execution, and the number of rows processedand examined, which are the number of rows in the table space scanned and the number of rows inthe table scanned, respectively, are presented. The invocation of each CURSOR SELECT statementconsists of OPEN CURSOR, FETCHes, and CLOSE CURSOR. Regarding an OPEN/CLOSE pairas the representation of an invocation of a CURSOR SELECT we have in Table 4.10 on theaverage 0.69 CURSOR SELECT invocations each of which comprises about 80 FETCHes. The\scan type" indicates what kind of scan has been performed by the Data Manager: index (INDX),table space (SEQD), or work �le (SEQW). The average number of rows quali�ed by the DM andRDS, the number of rows inserted/updated/deleted and the average number of pages scannedper SQL execution are also presented for each type of scan. During each SQL execution, notall scan types get invoked. Still, the average is taken over all executions of the statement type,not just the executions invoking the particular scan type. For FETCH and (singleton) SELECTtype statements, when each execution results in one RDS quali�ed tuple, the number in the RDScolumn reects the fraction of the corresponding scan type executions. For (singleton) SELECT,72% of the executions use index scan with an average of 1.06 (= 0.76/0.72) tuples examined per(RDS) quali�ed tuple, while 28% of the executions use table space scan with an average of 36.07 (=10.10/0.28) tuples examined per quali�ed tuple. For FETCH, only 20% of the executions use indexscan with an average of 453.2 tuples examined per quali�ed tuple, 77% of the executions use tablespace scan with an average of 64.79 tuples examined per quali�ed tuple, and 3% use work �le scanwith an average of 1147.67 tuples examined per quali�ed tuple. Thus as we can see, the singletonSELECT and cursor SELECT show very di�erent run time behavior. From Table 9, the �lteringfactors of the predicates at DM and RDS can be calculated. For example, under index scan, theDM selects one tuple out of every 40.1 (=90.64/2.26) tuples examined based on the SARGABLEpredicates and the RDS selects one tuple out of every 11.3 (=2.26/0.20) DM quali�ed tuples. Fromthe \pages scan" column, we can derive that on the average two hundred some pages need to beaccessed per transaction execution.For the number of relations involved in the SQL statements executed, we �nd that about7



95% access just one relation. Almost 5%, however, are fetching result tuples from some four-wayjoin operation. We next consider the e�ect of selectivity variations on the optimality of accesspath selection. Within the tracing period, there were a few situations where for a single FETCHstatement more than 1,000,000 rows (i.e. almost the entire table) were examined using index scan.On the average, 87% of the operations using an index examine less than 10 rows before they �ndthe quali�ed tuple, 99.6% examine less than 100 rows. The remaining 0.4%, however, can lead tovery long searches. Finally, we examine the execution behavior of the cursor SELECT statements,i.e. the number of FETCHes executed under a cursor SELECT. It is found that close to 87% ofthe time less than 10 tuples satisfy the predicates, but there are times (around 0.18%) more than10,000 tuples are quali�ed.In the particular environment we studied, the following observations can be made. The tables(including both base tables and views) have on the average 32.9 columns with an average columnwidth of 9.4 bytes. The base tables have on the average of 14 K rows, while the maximum is around1.9 M rows. About half of these tables have one or two indexes while nearly 40% have no index.Close to 90% of the transactions are read-only. A majority of the application plans contain only afew SQL statements (less than 10). Each application executes on the average about 60 SQL's, andmost of them are repeated executions of FETCH. There are substantial variations on the numberof FETCHes executed even for di�erent invocations of the same transaction plan. On the average,two hundred some pages are accessed per transaction execution. This workload is thus considerablymore complex and shows more variations on transaction execution time than the IMS transactionworkload examined in [18]. Almost 85% of the SQL statements executed are dynamic statements.Index scan is prevalent (72%) for singleton SELECTs and table space scan is prevalent (77%) forcursor SELECTs, which accounts for more than 90% of the SQL statements executed. The numberof tuples examined under index scan to get a quali�ed tuple can vary from a few to occasionallymore than a million, which is more than half of the maximum table size. This clearly indicatesthe e�ect of selectivity variations on the optimality of access path selection. We further analyzethe structure of the data manipulative SQL statements. Few of the SQL's involve GROUP BY,HAVING, subquery, and aggregate functions, etc., while ORDER BY appears in about one �fthof the static SQL statements. The WHERE clause consists on the average of 2 to 5 predicates,depending on the statement type, with a maximum of 22. In static SQL, each predicate almostalways has an input variable as the second operand, while in dynamic SQL parameter appears asthe second operand for about half of the time. About 5% of the SQL's executed are FETCHes intoresults of join type queries.5 ConclusionIn this paper a relational database workload analyzer, REDWAR, is presented. The objective is tostudy the structure and complexity of SQL statements, the makeup and behavior of transactions,and the composition of tables and views. This is applied to study a DB2 production environment,where an SQL trace for a two hour interval during peak period and an image copy of the databasecatalog were obtained. The results obtained provide the important information needed to build abenchmark workload to evaluate alternative design trade-o�s of database systems.ACKNOWLEDGEMENTThe authors are indebted to Y.-H. Lee for his contributions at the early stages of this study. Theyare grateful to Union Texas Petroleum for providing the DB2 workload. Also, they would like to8



thank L. Dalton, S. Degrange, G. Flatow, S. Lakshmi, A. Shibamiya, P. Selinger and J. Wolf fortheir help and advice. REFERENCES[1] C. J. Date, Relational Databases: Selected Writings, MA.: Addison-Wesley, 1986.[2] W. Alexander, T. W. Keller and E. E. Boughter, \A Workload Characterization Pipeline forModels of Parallel Systems," Performance Eval. Rev., vol. 15, no. 1, pp. 186-194, May 1989.[3] R. B. Ashton, \DB2 Workload Analysis," Proceedings of Computer Measurement GroupConf., pp. 71-73, 1986.[4] P. R. Chintamaneni and L. W. Dowdy, \Workload Characterization and Synthetic WorkloadGeneration: An Application Study," Comput. Syst. Sci. Eng., vol. 4, no. 4, pp. 205-215,Oct. 1989.[5] D. Ferrari, \Workload Characterization for Tightly Coupled and Loosely Coupled Systems,"Performance Eval. Rev., vol. 17, no. 1, pp. 210-211, May 1989.[6] G. M. King, \Workload Characterization," Proceedings of Computer Measurement GroupConf., pp. 789-801, 1986.[7] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price, \AccessPath Selection in a Relational Database Management System", Proc. of ACM SIGMOD 20,pp. 23-34, 1979.[8] S. Christodoulakis, \Implications of Certain Assumptions in Database Performance Evalua-tion", ACM Trans. on Database Systems, vol. 9, no. 2, pp. 163-186, June 1984.[9] M. S. Lakshmi, and P. S. Yu, \E�ectiveness Parallel Joins", IEEE Trans. on Knowledge andData Eng., vol. 2, no. 4, pp. 410-424, Dec. 1990.[10] Y.-H. Lee, and P. S. Yu, \Adaptive Selection of Access Plan and Join Methods", Proc. 13thIntl. Computer Software and Applications Conf., pp. 250-256, Sept. 1989.[11] R. W. Horst, and T. C. K. Chow, \An Architecture for High Volume Transaction Processing",Proc. 12th Intl. Symposium on Computer Architecture, Boston, MA, pp. 240-245. June 1985,[12] C. J. Date, \A Guide to DB2", MA.: Addison-Wesley, 1988.[13] \IBM Database 2 References", SC26-4078, IBM Corp.[14] \IBM System Planning and Administration Guide", SC26-4085, IBM Corp.9



[15] D. J. Haderle, and R. D. Jackson, \IBM Database 2 Overview", IBM System Journal, vol.23, no. 2, pp. 112-125. 1984.[16] \Database 2 Performance Monitor General Information", GH20-6856-01, IBM Corp.[17] \Database 2 Performance Monitor: User's Guide", SH20-6857, IBM Corp.[18] P. S. Yu, D. M. Dias, J. T. Robinson, B. R. Iyer and D. W. Cornell, \Distributed ConcurrencyControl Analysis for Data Sharing", Proceedings of Computer Measurement Group Conf., pp.13-20, 1985.

10


