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Abstract. This paper proposes a novel approach for the construction
and use of multi-feature spaces in image classification. The proposed
technique combines low-level descriptors and defines suitable metrics.
It aims at representing and measuring similarity between semantically
meaningful objects within the defined multi-feature space. The approach
finds the best linear combination of predefined visual descriptor metrics
using a Multi-Objective Optimization technique. The obtained metric
is then used to fuse multiple non-linear descriptors is be achieved and
applied in image classification.

1 Introduction

Content-based image retrieval uses descriptors derived from low-level image fea-
tures and user relevance feedback to successively find pictures in a database
according to a predefined metric in the descriptor space. These approaches rely
on low-level analysis for the inference and classification process [1]. For this rea-
son, the retrieval output often has little in common with high-level classification
as expected by human observer.

Though low-level feature extraction algorithms are well-studied and able to
capture important patterns in visual information [2], the bridge between au-
tomatic classification using such low-level primitives and higher level concepts
remains an open problem. This challenge is referred to as ‘the semantic gap’ [3].

In this paper the problem of semantic image classification using multiple
descriptors is considered. The emphasis is on single objects rather than on the
whole scene depicted in the image. However segmentation is not assumed, since
segmenting an image into single object is almost as challenging as the semantic
gap problem itself. To deal with objects in images, small image blocks of regular
size are considered. This paper focuses on devising an approach for combining
the low-level descriptors and finding suitable metrics to represent and measure
similarity between semantic objects. It is argued that semantic objects cannot
be described by single low-level descriptors and metrics. Their nature is com-
plex and requires a suitable combination of descriptors and multi-feature metric
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spaces. But most low-level visual descriptors show non-linear behaviours and
their direct combination may become meaningless. Some approaches to combine
them have been suggested, like combining descriptor distances by reducing the
metric combination to a single selected by a Boolean decision model and applica-
tion of weighted linear merging of distances where the weights are accumulated
from learned examples [4, 5]. A method to measure ”visualness” of concepts in
introduced in [6]. It performs probabilistic region selection for labeled images
and computes an entropy measure of ”visualness”. In another approach user
query is first classified into one of the predefined categories and the retrieval
results with query-class associated weights are then aggregated by learning from
the development data [7].

The idea of this paper is different from these methods and others in the
literature. We propose to combine descriptors and optimize their metrics by
analyzing the underlying patterns of low-level visual primitives in the training
set. Then the classification of images is done based on the obtained metric. The
proposed strategy is based on a Multi-Objective Optimization (MOO) technique,
in particular the Pareto Archived Evolution Strategy (PAES) is adopted in this
paper as optimization algorithm [8, 9, 10].

The paper is organized as follows: section 2 describes the strategy for block-
based concept modeling and feature extraction. Section 3 introduces the pro-
posed technique for building metric in a multi-feature space. Experimental eval-
uation of the proposed approach is presented in section 4 and the paper closes
with conclusions and future work in section 5.

2 A Block-Based Approach to Visual Concept Modeling
Using Low-level Primitives

Usually users are interested in finding single semantically meaningful objects
rather than global descriptions of whole scenes such as landscapes, cityscapes,
sunsets, or other elements make up the scenes. However current object segmen-
tation technologies are not yet powerful enough to distinguish areas of an object
from noisy areas like other objects or backgrounds when multiple objects are
overlapping or when the object consists of several parts that are visually very
different. Instead of doing segmentations, images can be regarded as mosaics
of small building blocks as objects representation. In most cases these building
blocks do not represent semantic concepts. But, small blocks of semantic ob-
jects should have certain similarity in their visual patterns. In this paper these
blocks are referred as ’elementary building blocks’, and some of these blocks
that, according to professional user’s subjective judgment, could best represent
the visual patterns of a concept are chosen as ’representative building blocks’.
Sets of these representative blocks can be used for visual pattern analysis and
extraction. Having a small but very representative set of representative building
elements for each semantic concept at hand, a suitable descriptor and its metric
in a multiple feature space is sought by using the proposed method described in
Section 3.
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2.1 Object-based approach

In the proposed approach the each image is split into 8x8 blocks of regular size.
Among the database of the elementary blocks, a professional user is required
to select a set of best representative examples for a concept. Several visual fea-
tures of the example set are analyzed and used as the training set of finding
the most suitable metric space that combines them. An examples of choosing
representative elementary building blocks of semantic concepts from one image
is illustrated in Fig. 1.

2.2 Feature extraction and metric definition in multi-feature space

The primitives used by the proposed analysis are selected from the visual descrip-
tors including MPEG-7 Colour Layout (CLD), Colour Structure (CSD), Domi-
nant Colour (DCD), and Edge Histogram (EHD) [11]. Two texture features are
also used as low-level primitives: Texture feature based on Gabor Filters (GF)
[12] and Grey Level Co-occurrence Matrix (GLCM) [13]. Additionally, to em-
phasis invariance to saturation, Hue-Saturation-Value (HSV) [14] color system
is also considered.

As mentioned before since most low-level visual descriptors are complex and
non-linear, they cannot be combined directly. Thus in this paper a combination
of distances with certain metric is used as a similarity measurement. In the very
first stage, a step to measure the primitive distances of blocks within different
descriptor spaces is conducted. A distance function or metric is defined as

d = dist(v1, v2) (1)

and varies for different descriptors, where v1, v2 are the feature vectors for a
particular descriptor.

Fig. 1. An image consisting of complex objects is split into elementary building blocks
representing single objects
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Suppost n descriptors are considered, vj is the jth descriptor used, j = [1, n].
To combine the distance calculated for each elementary block, the most straight-
forward candidate of possible metrics in the multi-feature space is the linear
combination of the distances defined for the descriptors:

D(V1, V2, A) =
n∑

j=1

αjdj(v
(1)
j , v

(2)
j ) (2)

where D is the sum of a set of distance function as defined (1), and it measures
the distance between two sets of feature vectors in a multi-feature space. A is the
set of weighting coefficients α we are seeking to optimize. For the specific case
given by (2), the optimality problem is regarded in the sense of both concept
representation and discrimination power.

The approach to estimate a metric in the underlying multi-feature space relies
on comparing different descriptors. Unfortunately, in most cases comparing these
functions becomes meaningless. To ensure minimum comparability requirement
all distances are normalized using simple Min-Max Normalization. This trans-
forms the distance output into the range [0, 1] by applying:

dj(new) =
dj −minj

maxj −minj
(3)

Fig. 2. The overall procedure in a scenario of searching for images of ’tiger’ using
proposed approach
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3 Image Classification in Multi-feature Space

The overall procedure of the proposed approach can be divided into three stages:
the pre-processing stage, the learning stage and the classification stage. This is
illustrated in Fig. 2. The pre-processing stage includes steps of splitting images
into blocks and low-level feature extraction. Besides, in this stage some repre-
sentative block are selected, their centroid is calculated, and a distance matrix
is constructed. The learning stage uses PAES to define a multi-dimensional sim-
ilarity metric space. The classification stage uses the learned metric to classify
blocks in database.

3.1 The pre-processing stage

Initially all images are split into blocks and the visual features of the blocks are
extracted. Given a semantic concept that the user would like to retrieve, the first
step of the proposed approach is to build up the training group of ‘representative
building blocks’. It is required for a visual representative element group to be
able to represent the nature that the objects of a concept have in common.
Besides, it is also required that it possesses the discriminating power of the
concept from noise of unrelated elements. Therefore in this paper two types of
the representative example are selected and both of the two types are combined in
a training set. The first type of representatives is the most relevant examples to a
concept in common understanding and they are referred as ‘positive examples’,
while the second are ‘negative examples’ which, intuitively, should consist of
blocks that are visually close to the concept but do not represent the targeting
concept.

Let S = {s(i)|i = 1, ...,m} be the training set of elementary building blocks
containing m elememts in total. For n low-level descriptors, a m × n matrix
is formed in which each element is a descriptor vector. The centroid for each
descriptor is calculated by finding the block with the minimal sum of distances
to all other blocks in S. All the centroids across different descriptors form a
particular set of vectors V̄ = {v̄1, v̄2, ..., v̄n}, in which v̄j is the centroid vector
for all the vectors of the jth descriptor used.

In general V̄ does not necessarily represent a specific block of S. Taking V̄
as an anchor, for a given concept representing an object the following distance
matrix can be constructed:

d
(1)
1 d

(1)
2 . . . d

(1)
n

d
(2)
1 d

(2)
2 d

(2)
n

...
. . .

d
(m)
1 d

(m)
2 d

(m)
n

(4)

is built. In (3) each row contains distances of different descriptors estimated for
the same block, while each column display distances for the same descriptor for
all blocks.
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3.2 Learning weighting factors for the multi-feature metric

Semantic objects can be more accurately described by a mixture of low-level
descriptors than by single ones. However, this leads to the difficult question
about how descriptors can be mixed and what is the ”optimal” contribution of
each feature. In a realistic scenario, an approach based on optimizing a single
objective function will not lead to acceptable results because of the complex
nature of semantic objects. Often for semantically similar objects, their visual
primitives are not similar. Even worse, in many cases different low-level visual
features contradict each other. To illustrate the conflicting nature of the objective
function presented in (2), an example is considered in Fig ??.

Fig. 3. Examples of image blocks for ’Building’ group (left) and ’Flower’ group (right)

Fig ?? shows Examples of image blocks for ’Building’ group (left) and ’Flower’
group (right). Blocks selected from images containing buildings (’Building’ group)
and blocks containing red flower (’Flower’ group) are shown in this figure. Con-
sidering the ’Flower’ group and its intrinsic concept (flower), a colour descriptor
identifies blocks in which the red colour is dominant. That is, if single objective
optimization is used, say for two descriptors, CLD and EHD, a weight of 1 will
be assigned to CLD while a weight of 0 will be assigned to EHD. The retrieval
process will mark predominantly red blocks in the database as ”Flowers”. In this
case the edges or textures of the flowers, which also strongly contribute to the
semantic concept, will be fully ignored. On the other hand, for the ’Building’
group, using a single objective optimization for CLD and EHD, the EHD will
dominate the similarity estimation while the CLD or other colour and texture
features that are also important for the concept will again be neglected. In order
to include all the descriptive characters contained in every single representative
building block, each of them should be considered as an objective function in
the optimization problem. However, when optimizing a set of contradicting ob-
jective functions, usually there is not unique solution achieving an optimum for
all objectives at the same time. The solution of the problem at hand is closely
related to multiple decision making strategy in which simultaneous optimization
of multiple objectives is sought.

In this paper the Pareto Archived Evolution Strategy (PAES) [8] is adopted
to optimize the combination metrics. PAES is an evolution strategy employing
local search but using a reference archive of previously found solutions to identify
the approximate dominance ranking of the current and candidate solution vec-
tors. This will produce a set of set of Pareto Optimal Solutions. Unfortunately
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none of these pareto-optimal solutions can be identified as better than others
without any further consideration, so a second step is required: a higher-level
decision-making involving further considerations to choose a single solution.

In this paper the second step is based on finding the minimum solution of

F =
sum of objective functions of all positive examples

sum of objective functions of all negative examples
(5)

considering the that small sums of weighted distances of positive examples means
better gathering of all positive points while big sums of weighted distances of
negative examples means sparseness of the negative points, which is just the
target we are seeking to achieve.

An intensive study as well as comparison with other algorithms in MOO is
done in [8]. As a result PAES is a capable multi-objective optimizer across the
problems tested.

The problem of finding the suitable metric consists of finding the optimal
set of weighting factors α, where optimality is regarded in the sense of both
concept representation and discrimination power. This optimization problem
can be tackled by minimizing or maximizing one or several objective functions
as in (2).

For a given semantic concept and its according distance matrix (3), the op-
timization is then performed on the set of objective functions like (2):

D̄(V, V̄ , A) =


D1(V1, V̄ , A)
D2(V2, V̄ , A)
...
Dm(Vm, V̄ , A)

(6)

In (5) D̄ is the set of objective functions {Di, i = 1, ...m}, Di is the distance
vector of the ith block, and A is the collection of weighting factors. The optimal
solution is to find the A = {aj |j = 1, ..., n} by which the objectives of positive
examples in D̄ reaches their minimal values while the objectives of negative
examples in D̄ reaches their maximal values, subject to constraint

∑n
j=1 aj = 1.

This set of weighting factors is assumed to be the metric that represents the
symbolic nature of the concept within a multi visual feature space.

According to the different kinds of examples the way of optimizing the ob-
jective functions are different. The optimization process is to simultaneously
minimizing the objective functions from the positive representative group and
maximizing the objective functions from the negative representative group.

3.3 Classification: The Minimum (Mean) Distance Classifier

The Minimum (Mean) Distance Classifier (MDC) is utilized in this paper for clas-
sification within the obtained multi-feature metric space. The reason of choosing
it as the classifier is that it is simple to implement and works well when the dis-
tance between means is large compared to the spread of each class. What’s more,
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because of its simplicity, it is easy and safe to be transformed into any desired
non-linear high-dimensional multi-feature space. Some more intelligent classifier
may also be used in future but for now they are avoided despite their various
appealing characters, due to the uncertainty of their behaviours when adapted
into the transformed metric space.

MDC is a special case of classifiers based on discriminant functions. It is
usually applied in linear space, but in this paper, it is adapted to the metric
space which combines several non-linear similarity functions of descriptors by
the linear weighted function obtained from the PAES algorithm.

The centroid vector as we described in Section 2.2 from the positive examples
is used as the mean of the positive class, and is referred later as V̄+. On the other
hand a V̄ that can be obtained by using the same method from the negative
examples is used as the mean of the negative class. Using the obtained metric,
say A = {aj |j = 1, ..., n} , write the distance functions to the two mean values
as:

Di+(V (i)
+ , A) =

n∑
j=1

αjdj+ (7)

Di−(V (i), A) =
n∑

j=1

αjdj− (8)

D
(i)
+ is the distance vector of the ith block to s̄+ , and vice versa; while Di+

is the similarity estimation of the ith block in the obtained metric space, and
vice versa. The decision boundary which separates the positive class from the
negative class is given by:

Di+(V (i)
+ , A)−Di−(V (i), A) = δ (9)

where δ is a variable that is usually 0 but can be changed for different concepts
to fit different requirements.

4 Experimental Evaluation

As stated before current approaches from the conventional literature combine
multiple features for image classification using a different model. Usually, clas-
sification is done applying single descriptors and fusion of results is performed
after the initial mono-feature classification. This makes it difficult to compare
our approach with relevant ones from the literature. Even a simple analysis of
the final results, for the sake of comparison, is not feasible due to the lack of
common test sets. A more critical fact rendering a fair comparative study almost
impossible is that software implementation of previously reported approaches is
not available and it is not trivial to implement them using only the reported
algorithmic steps. For these reasons in this paper only a set of experiments us-
ing each single descriptor have also been performed for comparison with the
proposed approach.
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4.1 Experimental Setup

The test data contains 700 images selected from ‘Corel’ dataset. The images are
labeled manually on 5 predefined concepts as ground truth. The concepts are
“building” (141), “cloud” (264), “grass” (279), “lion” (100), and “tiger” (100).
The numbers in brackets after concepts are the numbers of images containing
the concepts in the test dataset according to ground truth.

As the propose approach classifies images based on their elementary building
blocks, we argue that if a block of an image is classified as relevant to a con-
cept, then the image itself is judged as similar to the concept. As a retrieving
performance evaluation the MDC is used as a classifier.

4.2 Experimental Results and Evaluation

A group of 10 positive representative blocks and 10 negative representative blocks
are manually selected to represent each concept by professional user. For each
group (concept) a distance matrix (5) has been computed with the selected
blocks and the 7 descriptors used resulting in sets of 7 weighting factors. Using
the 7 weighting factors as a combination metric, the accuracy of relevant images
classified by the MDC classifier is shown in Table 2, as the first column in each
row. The experiments using each single descriptor are also shown in Table 2 for
comparison and evaluation.

As it can be observed from Table 2, among the 5 groups of experiments,
in the experiments for “cloud”, “grass”, “lion” and “tiger”, the approach using
the obtained metric outperforms the approached using any single one of the
7 descriptors. Only in the “building” group the single descriptor EHD slightly
outperforms the proposed approach.

Table 1. The accuracy of image classification using obtained metric

% Obtained metric CLS CSC DCD EHD GF GLCM HSV

building 70 48 24 20 74 40 38 42
cloud 79 76 70 38 68 28 34 78
grass 92 92 86 28 82 64 88 88
lion 88 50 36 16 50 24 40 66
tiger 60 2 46 7 14 26 34 57

However the results show that the proposed approach using positive and neg-
ative representative blocks is generally better than the retrieval based on single
descriptors. Even though in some cases specific single descriptors are dominant
for a concept, the result from proposed approach is very close to it.
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5 Conclusion and Future Work

A technique to estimate optimal linear combinations of predefined metrics by
applying a Multi-Objective Optimization is presented. The core strategy uses
MOO to optimize the metric in multi-feature space. The proposed approach
has been tested for the classification of objects in images. A more comprehen-
sive evaluation of the proposed technique and additional improvements of the
method are being undertaken. Immediate work includes adopting more intelli-
gent classifier which can employ the obtained multi-feature metric, as well as
extension and evaluation with several other low-level descriptors. Future work
will focus on non-linear combinations of descriptors and metrics.
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