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ABSTRACT
In practical classification, there is often a mix of learnable
and unlearnable classes and only a classifier above a min-
imum performance threshold can be deployed. This prob-
lem is exacerbated if the training set is created by active
learning. The bias of actively learned training sets makes
it hard to determine whether a class has been learned. We
give evidence that there is no general and efficient method
for reducing the bias and correctly identifying classes that
have been learned. However, we characterize a number of
scenarios where active learning can succeed despite these
difficulties.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; H.3.1 [Information
Storage and Retrieval]: Content Analysis and Indexing

General Terms
Algorithms, Measurement, Performance, Experimentation

Keywords
practical text classification, active learning, accuracy esti-
mation, learnability

1. INTRODUCTION
Text classification is the problem of devising an automatic

method for determining membership of a document in a pre-
defined text category or class [23]. For example, a spam fil-
ter recognizes email messages as being part of the category
spam and directs them to a special folder. The behavior of
many other document-centric applications depends on cat-
egory membership in a similar way. Text classification has
therefore become one of the key technologies for processing
and managing electronic documents.

Text classifiers are commonly created by estimating the
parameters of a statistical classification model on a labeled
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training set. Most academic research on text classification
assumes the prior existence of a sufficiently large training
set. However, in most practical settings there initially exists
no labeled training set. Creating the labeled set that is
needed for parameter estimation is therefore an integral part
of the text classification problem.

In fact, training set creation is often the main cost in text
classification since it has to be done manually. Sometimes
labelers are hired and paid for the sole purpose of training set
creation. In other cases, one needs to find a subject expert
within an organization, typically an employee who has other
responsibilities and will be reluctant to spend hours on end
with a repetitive labeling task.

Another characteristic of practical text classification is
that classifiers must operate at a minimum level of perfor-
mance. For most business problems it is unacceptable to
deploy a classifier with unknown performance. We there-
fore need a way to assess the performance of a classifier in
order to make sure that only well performing classifiers are
deployed.

We call this setting practical text classification to distin-
guish it from work on text classification that assumes the
prior existence of a large labeled training set. Practical text
classification is characterized by the following conditions:

• Initially, there exists no labeled training set.

• Labeling is expensive and the cost of labeling should
be minimized.

• Classifiers can only be deployed if their performance
(as measured by some evaluation measure such as F1)
is better than a predetermined threshold.

• Most classes are “small”: their population rate is 0.01
or even smaller.

For small classes, one cannot efficiently create a training
set by drawing a random sample. A category with a rela-
tive frequency of 0.01 is expected to have just 10 positive
examples in a random sample of 1000. In general, one needs
many more than 10 positive examples to train a reliable text
classifier.

A more efficient method of training set creation is ac-
tive learning (AL) [14]. AL samples documents from the
subspace that contains “informative” or “uncertain” docu-
ments, i.e., those documents that the current classifier is
unsure about and that are likely to provide the most infor-
mation per labeling decision. An iteration of AL selects one
or more such informative documents from the pool of un-
labeled documents, labels them, adds them to the training



set and retrains the classifier, thus redefining the region of
uncertainty in each step. To get AL started, one needs a
small seed set of labeled documents, which may come from
a keyword search or some other source. AL implicitly as-
sumes that a large pool of unlabeled documents is available
and that querying this pool is cheap compared to labeling
since the latter takes a human expert’s time.

It has been shown that AL is effective in creating high
performance classifiers with a relatively small number of la-
beling decisions [4, 14, 27]. However, given the additional
need in practical text classification to only field classifiers
that exceed some predetermined threshold, two problems
arise: learnability and decidability.

Learnability refers to the fact that some classes are not
learnable. We define a class to be learnable if there exists
a learning procedure that produces a classifier exceeding a
performance threshold θ with a certain level of confidence,
where threshold and confidence level depend on the applica-
tion (a θ of F=70% to 95% and a confidence level of 95% to
99% are typical). A class may not be learnable in principle
because of a high Bayes error rate intrinsic to the learn-
ing problem or it may not be learnable because the selected
document representation formalism is not powerful enough
(e.g., a bag of words model). Note that this concept of learn-
ability is different than PAC learnability in machine learning
[18, 9]. In PAC learnability, a problem is considered learn-
able if, with high probability, the learner finds a hypothesis
within a delta of the minimum possible error. In contrast,
we want the learner to find a hypothesis within delta of an
absolute level of performance (and to detect if that is not
possible). So learnability as defined here is with respect to
an absolute level of performance whereas it is relative to the
optimal possible performance in PAC learnability.

Some corpora used in text classification research only con-
tain learnable classes. But in practice classes are selected
and defined according to their utility for a business prob-
lem. Our experience at several companies is that very often
a subset of these classes turn out to be unlearnable. In some
cases the reason is that even humans cannot make the classi-
fication decision; in other cases the representations typically
used in text classification omit important information (e.g.,
the order of words in the bag-of-words model). In both cases,
the Bayes error rate of the classification problem, as defined
in the particular application, is too high to predict class
membership reliably (i.e., with performance exceeding the
chosen threshold). If AL is applied to such a category, the
training set will not contain sufficient information to learn
the category. Most previous work on AL assumes that all
categories are learnable, so the learnability problem was not
addressed. In those cases where researchers work with a mix
of learnable and unlearnable classes, their goal is to optimize
classification performance even if optimal performance is at
a low level for a subset of classes [14, 15] or to maximize
micro-average [30], which is mostly determined by perfor-
mance on large categories. The problem of learnability is
ignored in both approaches.

Decidability refers to the meta-problem of deciding whether
a category has been learned at a given point in AL or not.
We need an automatic decision procedure that tells us whether
learning was successful. The problem is that assessing per-
formance objectively is hard in the absence of a randomly
sampled training set. The actively learned training set is
highly biased, so that standard methods (e.g., leave-one-

out) do not produce usable estimates as we will show below.
Decidability is critical in practical text classification as we
define it since a classifier can only be deployed if it meets
minimum performance requirements.

The bulk of this paper is concerned with developing a
method that addresses learnability and decidability based
on an idea due to [12] for estimating the performance of a
classifier from unlabeled data. We propose several variants
of this method and evaluate them experimentally. Our con-
clusion is that there is no general solution to learnability
and decidability in practical text classification that is more
efficient than random sampling. In particular, we conclude
that in reality AL does not reduce the effort required to pro-
duce a deployable classifier unless additional assumptions
are made. While our study is empirical, we believe that the
experimental evidence presented here provides strong sup-
port for our conclusions.

In addition to recasting the problem of practical text clas-
sification in these terms, our main contribution is to bound
the applicability of AL. We characterize a number of sce-
narios where AL is an effective approach to practical text
classification in spite of the difficulties discussed.

The paper is organized as follows. Two examples illus-
trating the problems of learnability and decidability are pre-
sented in Section 2. Section 3 describes a decision procedure
based on Lewis’ estimator of F. Five methods that attempt
to produce unbiased estimates for this procedure are pro-
posed and evaluated in Section 4. Section 5 analyzes the
results of the experiments. Sections 6 and 7 discuss related
work and learnability and decidability in practical text clas-
sification in light of our experiments.

2. THE MISSED CLUSTER EFFECT
For illustration, we present two examples, one synthetic

and one from the experiments described below. In the syn-
thetic example, we want to learn a binary classification func-
tion f defined on the real numbers. Let the hypothesis
space be the set of sets of real non-overlapping intervals:
Ic = 〈[l1, r1], [l2, r2], . . . , [lnc , rnc ]〉 with li < ri and ri < li+1

for i ≤ nc − 1. A point is in a category iff it is in one of its
intervals. Consider the set of categories ci: Ic0 = 〈[−2,−1]〉,
Ici

= 〈[−2,−1], [2i, 2i + 1]〉, i > 0. If, by bad luck, we end
up with a seed set of points none of which is in an interval
[2i, 2i+1], i > 0, then AL will focus on the interval [−2,−1]
and its surroundings. There simply is no information that
we could exploit systematically that would distinguish cases
where we learn c0 from cases where we learn one of the other
ci. AL strategies will learn the decision boundaries -1 and -2
and thus reach precision close to 100%. But there is no gen-
eral procedure for determining whether there are unexplored
parts of the space that contain positive examples. We call
such unexplored regions missed clusters. Missed clusters can
only be found with random sampling, which by definition is
not AL. As a result, AL cannot learn the categories ci, i > 0
for a seed set that does not contain points from the inter-
val [2i, 2i + 1]. This is the learnability problem: a category
ci, i > 0 will only be learned for certain fortuitous seed sets.
If (parts of) a category are not learned, then this affects
accuracy estimation, in particular recall estimation. Recall
will be overestimated in the case of an unknown missed clus-
ter. For that reason a correct decision as to whether a classi-
fier has reached a certain level of accuracy cannot be made.
This is the decidability problem.



To provide an example from our experiments, we analyze
an AL model for the category “Australia” in RCV1, a corpus
of newswire articles from 1996 and 1997 covering topics like
politics, business and sports (see Section 4 for details on our
experimental setup). A set of false negatives from unlabeled
data was clustered into 10 clusters using k-means. We com-
puted the distance of these clusters to the “labeled cluster,”
the cluster consisting of the entire training set labeled in AL.
We define the distance of two clusters as the smallest Eu-
clidean distance of any pair of members. Cluster 7 (with 53
documents) was the cluster with the largest distance (1.64)
to the labeled cluster. Note that the maximum distance of
two normalized vectors is 2.0, so the two clusters are at close
to maximum distance from each other. Of terms that did
not occur in the labeled set, the following 5 occurred in most
documents in Cluster 7: cbot (occurred in 48 documents),
nymex (48), roundup (48), comex (47), and bushel (46). The
cluster turned out to be a cluster of documents about the
topic “Australian commodities roundup”. Except for the
single word “Australian,” there is nothing else that makes
Cluster 7 similar to the concept of relevance that the AL
process has learned. “Australian” also occurs in many non-
relevant documents, so there is no simple rule that would
distinguish the false negatives in Cluster 7 from true nega-
tives. Cluster 7 corresponds to the intervals [2i, 2i+1] in the
synthetic data: AL is not able to identify the members of
Cluster 7 as informative or uncertain and therefore worthy of
being included in the training set – Cluster 7 is too far from
the decision boundary. And unless we are willing to give up
AL for random sampling, there is no search algorithm for
locating such clusters far from the decision boundary. As
a consequence there is no obvious criterion for stopping AL
– we never know whether there is an undiscovered cluster
remaining or not.1

These two examples show that missed clusters, if they oc-
cur, pose serious problems for the decision problem of inter-
est. However, it is possible that missed clusters rarely occur
in practical classification problems. In the next section, we
test the performance of an accuracy estimation procedure
that is expected to perform well in the absence of missed
clusters and give evidence that it fails because of the missed
cluster effect.

3. ACCURACY ESTIMATION FOR AL
One solution to decidability is to define a level of accept-

able performance θ, say F=80%, and stop AL when this
level has been reached. This procedure is motivated by our
experience with text classification in practical applications.
Usually a minimum quality is required for a classifier to be
deployed. An alternative goal would be to achieve optimal
performance, but this is insufficient – a performance of 5%
can be optimal for a particular category. A classifier with
such a low performance cannot be deployed.

The key question is: how do we know whether the classi-
fier is below or above θ? We need an absolute (as opposed to
relative) assessment of accuracy of the classifier. We do not
have the luxury of a random held-out set in AL – if there
were sufficiently many labeled examples for such a set, then
there would be no need for AL. We demonstrate below that

1If the pool is finite, all documents will eventually be added
to the training set, but relying on the finiteness of the pool
is no better than exhaustive labeling of all available data.

leave-one-out estimation on the labeled sample has a large
bias.

The decision procedure we evaluate as an alternative is
based on Lewis’ estimator of F for an unlabeled random
sample. This estimator takes advantage of the fact that we
can compute expected error rates for a random sample if
our classifier is probabilistic. For example, if the class prob-
ability of a document according to the classifier is 80%, then
there is a 20% error probability for a discrete assignment.
The key advantage of this decision procedure is that we use
an unlabeled instead of a labeled random sample to estimate
the accuracy of the classifier.

We use the F1 measure (based on [28], henceforth F), the
harmonic mean of precision (P) and recall (R), for evalua-
tion. Actively learned classifiers sometimes fail catastroph-
ically with respect to precision or recall. In those cases, F
is close to the minimum of the two, which is a good char-
acterization of classifiers with either precision or recall close
to 0.

F can be defined as a function of true positives (tp), false
positives (fp) and false negatives (fn):

F = (
1
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P
+
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We define F to be 0 if there are no true positives. We
compute the expectations of tp’s, fp’s, and fn’s following
[12]:

btp =

nX

i=1

p̂idi, bfp =

nX

i=1

(1 − p̂i)di, bfn =

nX

i=1

p̂i(1 − di)

where n is the number of documents, p̂i is the estimated
probability of document i being relevant and di = 1 for
p̂i >= 0.5 and di = 0 for p̂i < 0.5.

Following Lewis, we can then estimate F as follows:

F̂ =
2

Pn

i=1
p̂idi

2
Pn

i=1
p̂idi +

Pn

i=1
(1 − p̂i)di +

Pn

i=1
p̂i(1 − di)

=
2

Pn

i=1
p̂idiPn

i=1
(p̂i + di)

Lewis derives error bounds for this estimator in [12] and
shows that, for two hypothetical data sets, it performs well
if the classifier estimates the distribution of p̂i over the data
correctly and if

Pn

i=1
p̂i and

Pn

i=1
di are not too small. In

this paper, we test the estimator empirically. The impor-
tant property of F̂ for our purposes is that it allows us to
assess the quality of a classifier without a large labeled train-
ing set. All we need is a large unlabeled random sample and
unbiased probability estimates. We can compute probabil-
ity estimates p̂i, make classification decisions di based on
these estimates, compute an estimate of F and then make a
deployment decision – all without actual labels.

However, Lewis’ simulations suggest that this decision
procedure for AL will only produce correct results if the
probability estimates are unbiased. Biased estimates will in
general lead to overly optimistic or pessimistic estimates of F
because the classifier over- or underestimates its confidence
in making decisions.



There can be a conflict between the two goals of classifica-
tion accuracy and “unbiasedness,” i.e. the goal of producing
unbiased probability estimates. Consider two classifiers c1

and c2 for a class C with prior probability pC = 0.5. The
classifiers assign documents to the more probable class. c1

estimates the probability of relevance for all documents as
0.5 + ǫ. Then c1 is an unbiased estimator. Its classification
accuracy is 50%. c2 estimates a probability of relevance of
0.0 (without bias) for non-relevant and 0.9 (with negative
bias) for relevant documents. c2 is a biased estimator be-
cause it underestimates its certainty by 0.1 for relevant doc-
uments, but it has higher accuracy than c1 (100 vs. 50). A
choice between c1 and c2 is a choice between classification ac-
curacy and unbiasedness. Ideally, we can find a method that
is optimal on both counts; but in practice we may have to
trade less bias for worse classification accuracy. This trade-
off does in fact occur in the experiments below (methods C
vs. LR for estimating precision).

We do not view this tradeoff as a traditional bias-variance
tradeoff [7] because the learning problem (in particular, the
training set) is variable. We are comparing a learning prob-
lem with a randomly selected training set (low classification
accuracy, low estimation bias) with a learning problem with
a different, actively learned training set (high classification
accuracy, high estimation bias). This comparison is the one
of interest here since we want to hold the cost of classifica-
tion, which corresponds to the number of labeling decisions,
constant.

There is a large body of research about methods that pro-
duce unbiased probability estimates (e.g., logistic regression)
versus those that do not (e.g., Naive Bayes, [5]). However,
the problem at hand is complicated by the fact that our
training set is 1) small and 2) biased.

In the following sections, we look at 5 different classifica-
tion methods and their ability to provide unbiased proba-
bility estimates in the service of our decision procedure for
AL. These methods are also compared with leave-one-out
estimation.

4. EXPERIMENTS
The first half of the RCV1 corpus [15] (400,001 docu-

ments) was used as the experimental testbed.2 This first
half was randomly split into POOL and EVAL. Seed and
query documents are drawn from POOL, EVAL is used for
evaluation.

In the first set of experiments linear SVMs [29] were used
because they are generally viewed as having optimal or close
to optimal performance in text categorization [31].

Each document is represented as a stemmed, tf-idf-weighted
word frequency vector, using the formula (1 + log tf) · log N

df
for tf > 0 where N is the number of documents. Document
vectors are normalized to unit length. A stop list of common
words was used. Using this representation, the document
vectors have 276,727 dimensions. Note that in contrast to
other AL studies, feature selection was not necessary.

We use uncertainty sampling as proposed by [14], which,
in each iteration, selects the most uncertain document for la-
beling. The seed set for AL consisted of 5 positive and 5 neg-
ative documents that were randomly selected from POOL.
100 iterations of AL were performed consisting of computing

2We intend to use the second half as a temporally separated
data set for research not discussed here.

an SVM model (Mi, 0 ≤ i ≤ 99) on the labeled set, labeling
the document with score closest to 0, and adding it to the
labeled set. One last model, M100, was then computed on
the labeled set of size 110.

The number of 100 iterations was chosen because the ex-
pert’s time per category is often limited due to cost con-
straints. If an expert (often a highly paid and specialized
employee who is needed elsewhere) can label 2 examples per
minute, then labeling 110 examples for 43 categories would
take roughly one week. When highly uncertain long docu-
ments (as opposed to short titles) are judged for extended
periods of time, then a speed of greater than 2 per minute
is hard to exceed, especially if high labeling accuracy is re-
quired (as is the case in AL).

One set of 10 categories was selected randomly from each
of 4 frequency ranges of n ([101, 102), [102, 103), [103, 104),
and [104, 105)) where n is the number of positive documents
in POOL and EVAL. All categories with n > 105 (a total of
3) were included. Categories with n < 101 were excluded.
The evaluation set therefore contains 43 categories. By con-
struction, the set contains a mix of “small” and “large” cate-
gories and is in that respect a good model of many practical
text classification tasks. 5 trials of AL were run for each of
the 43 categories.

To determine the optimal level of performance, one set
of SVM models was trained on the entire pool (which was
treated as labeled in this case). Table 1 compares the perfor-
mance of this optimal model (column “optimal”) with M100.
Performance of M100 is about 9% worse on average (56 vs.
65). All performance numbers in Table 1 were computed on
EVAL.

To model a realistic AL scenario, we needed a mix of
learnable and unlearnable categories. We confirmed post-
hoc that our selection procedure achieved this. The median
F on EVAL after 100 AL iterations is 65. 12 categories had
an optimal F score of less than 50, which qualifies the cat-
egory as not having been learned in most practical settings
we are familiar with.

The experimental system was implemented in python. It
uses svmlight [11] for SVM computations (with default pa-
rameters for linear SVMs) and R for (non-regularized) lo-
gistic regression.

4.1 Leave-one-out estimation
Leave-one-out (LOO) estimation is commonly used for ac-

curacy estimation. 110 SVM models were trained on the dif-
ferent subsets of size 109 of the labeled set and then applied
to the remaining labeled document. The 110 decisions were
recorded and evaluated using F. The average estimation er-
ror of LOO was -4, the average absolute estimation error
was 19 (see Table 1, column ∆ LOO). For each category, the
standard deviation of the (non-absolute) error over 5 trials
was computed. The average of these 43 standard deviations
was 6, indicating moderate variability. Sigmas for all other
non-absolute means in Table 1 were similarly computed to
show that variability across the 5 runs was moderate in gen-
eral (with the exception of ∆S).

The magnitude of the estimation error (19) makes LOO
unusable in practice. To illustrate this point, we estimated
the expected error of accepting a classifier with performance
F̂ estimated by LOO and true (unknown) performance F



optimal M100 ∆ LOO S ∆ S C ∆ C SM ∆ SM CM ∆ CM LR ∆ LR
qi 65 56 −4 57 +23 28 +55 61 +22 61 +34 58 -39

F σc 3 6 8 17 3 5 4 6 3 5 4 4

|qi| 19 30 55 27 34 39
qi 82 78 −15 69 +25 80 +2 75 +16 80 +16 73 +7

P σc 5 6 12 12 4 3 7 7 5 6 7 6

|qi| 18 26 5 19 16 12
qi 57 48 −2 59 +19 19 +65 57 +21 54 +40 53 -41

R σc 3 6 6 17 2 5 5 8 4 5 3 3

|qi| 18 27 65 32 40 41

Table 1: Evaluation of F, Precision (P), Recall (R) and their estimation errors. Values are given as per-
centages. Columns refer to “Optimal” (SVM trained on the entire POOL, all other methods are trained on
the actively learned training set), M100 (SVM), S (method Simple), C (method Committee), SM (method
Simple-Mixed), CM (method Committee-Mixed), and LR (logistic regression). ∆ columns give the error for

the corresponding method (F̂i − Fi, P̂i − Pi, and R̂i − Ri). ∆ LOO is the error of LOO for estimating the
performance of M100. Depending on the row, qi refers to error in estimating F, P, and R (∆ columns) or to

F, P, and R (remaining columns). qi and |qi| are averaged over 43 categories × 5 trials (except for the qi in
column “optimal”, which average over 43 classes since the optimal SVM is independent of the seed set). σc

is the average of 43 standard deviations (one per class), each computed on a set of 5 qi.

using threshold θ on F̂ by

E[L(F̂ , F |θ)] = P (F̂ < θ|F > θ)P (F > θ)

+P (F̂ > θ|F < θ)P (F < θ)

where L is the (unit) loss that occurs when the decision is

wrong. Assuming that the LOO estimates F̂ are normally
distributed (with parameters estimated from the 5 trials for
each of the 43 categories), thresholding at 0.75 has a 35%
chance of making a mistake over all the categories.

LOO is effective if the labeled set is random and large.
But if the labeled set is biased and small, as in our case,
LOO does not provide good estimates and therefore does
not lend itself to making reliable deployment decisions.

The premise of Lewis’ method is that probability esti-
mates are unbiased. We test four different strategies for
computing unbiased estimates: a hybrid model that converts
scores into probabilities (method S), bagging (models C and
CM), a model that is trained on unlabeled data (model SM)
and multivariate logistic regression (model LR). Models S,
C and LR are standard models commonly used in text clas-
sification (see references below). Method SM (and also CM)
were designed to use unlabeled data for the specific purpose
of producing unbiased probability estimates. Most work in
machine learning that exploits unlabeled data is instead fo-
cussed on improving classification accuracy.

4.2 SVM models
The first model is a simple hybrid SVM classifier. M100 is

applied to the final labeled set of size 110. A logistic model
is then fit on the 110 scores as predictors and the known
labels as responses. We call this model “simple” (S). This
type of conversion of scores into probabilities is common in
text classification [14, 20].

Classification and estimation results for method S are
shown in columns S and ∆ S of Table 1. Classification accu-
racy is similar to that of M100 (57 vs. 56). Estimation error
is larger than for LOO: average absolute error is 30 (vs. 19
for LOO). The estimation bias (∆ S) is strongly positive:
+23.

The reason for this positive bias is the bimodal distribu-

tion of SVM scores that the logistic model is trained on:
they are either close to -1 or 1. As a result, most estimated
probabilities of relevance are close to 0 or 1: 96% of proba-
bility estimates are in [0.0, 0.1] ∪ [0.9, 1.0]. In other words,
the classifier is too sure of itself due to a training set with few
documents in the middle range between clearly non-relevant
and clearly relevant.3

For the bagging [2] classifier (method C), we follow [21]. 5
SVMs were trained on subsets of 109 of the labeled set. The
5 SVMs were applied as a voting committee to EVAL and
the probability of class membership was then computed as
the proportion of yes votes. In initial experiments we found
that uncorrelated committees perform best. To find 5 uncor-
related methods we selected from the unlabeled pool a sub-
set C consisting of the 1000 documents whose M100 scores
were closest to 0 (500 with positive scores, if available, and
the rest with negative scores). The similarity s between two
models was then defined as the correlation of their scores on
C. With respect to a set of available models A and a subset
of selected models U , we define the minimally similar model
DA(U) to be argminLj∈A−U maxLk∈U s(Lj , Lk). We start

with the set A = {Li|1 ≤ i ≤ 110} where Li is the model
trained on the set of 110 labeled documents minus docu-
ment i. We then selected {Di

A({L110})|0 ≤ i ≤ 4} as our
committee of 5. Unfortunately, model C’s classification and
estimation results are poor, in fact the average error of +55
was the worst in any of the experiments performed. Bagging
does not seem to produce accurate probability estimates for
small biased training sets.

The third method, SM, exploits the distribution of un-
labeled data for more accurate estimates. The basic idea
is to guess the labels of unlabeled documents in the pool
based on their distances from the separating hyperplane.We
defined the uncertainty margin as all points at a distance
of at most d from the separating hyperplane computed by

3We ran the same experiment with disjoint training sets
for SVM and logistic regression (under a cross-validation
regime) on the hypothesis that overtraining might exacer-
bate bias in estimation. However, there was no significant
increase in the accuracy of estimates of F.



M100. For the experiment we chose d = 0.25. An unlabeled
document with score s in POOL was “artificially” labeled
as true for s > d, as false for s < −d or assigned a class
membership probability of 0.5−ǫ for −d ≤ s ≤ 0 and 0.5+ǫ

for 0 < s ≤ d. We chose ǫ = 1

6
because the four probabil-

ities {n
3
, 0 ≤ n ≤ 3} are the simplest way of distinguishing

the four cases: certainly positive, uncertain tending positive,
uncertain tending negative, certainly negative.

A logistic model was then trained on the SVM scores of
M100 as predictors and the union of true labels (for the la-
beled set) and artificial labels as responses. We call this
model “simple-mixed” (SM) since it is trained on a mix of
labeled and unlabeled data. The model’s performance for
F is similar to M100, with the average being higher (61 vs
56, column SM). The absolute error in estimating F is worse
than LOO (27 vs. 19, column ∆ SM).

The last SVM method, “committee mixed” (CM), com-
bines information from the 5 models in method C and the
unlabeled pool in method SM. The 5 committee models were
selected to be as diverse as possible in the hope that the
amount of disagreement among models can be converted to
an unbiased probability estimate. As an indicator of con-
fidence in the prediction of the models, we simply use the
average of the 5 scores. The “artificial” labeling of the un-
labeled pool is performed by method C so that documents
are assigned a class membership probability in {0.2 ∗ n|0 ≤
n ≤ 5}. A logistic model is trained on the averages of the 5
SVM scores as predictors and the union of true labels (for
the labeled set) and method C predictions (for the unlabeled
pool) as responses. In classification, the 5 SVM scores are
averaged and the logistic model is then applied to this av-
erage. Classification accuracy of method CM is better than
M100 (61 vs. 56, column CM), but estimation of F is worse
than for LOO (average absolute error of 34 vs. 19, column
∆ CM).

4.3 Regularized logistic regression
SVMs are optimized with respect to optimal discrimina-

tion without regard to producing accurate probability esti-
mates. The multi-stage procedures that convert scores into
probability estimates are not guaranteed to be optimal. We
therefore also tested regularized logistic regression (LR) as a
method that outputs unbiased probability estimates if cer-
tain assumptions hold. We used the BBR package [8] to
train a logistic classifier on the final training set of 110 la-
beled documents.

The average F of LR was 58 (column LR). The bias of the
estimation error for precision (+7, column ∆ LR) is smaller
than for any of the other reasonably performing methods
(method C is an exception due to its poor F). However, the
magnitude of the absolute error of F (39) is larger than for
the SVM-based methods (again, except for method C).

4.4 Support vector machine AL
All AL methods are by construction biased: Training set

examples are selected non-randomly in order to create a
maximally informative training set for a given number of la-
beling decisions. It is however possible that some AL meth-
ods construct training sets with a higher bias than others.
To investigate a possible dependency of bias on AL method,
we ran a final set of experiments with support vector ma-
chine active learning (SVMAL [27]; here, LIBSVM [3] was
used). SVMAL trains two SVM models for each member of
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Figure 1: Estimation error of methods CM (solid)
and LR (dashed). Example: the true probability of
relevance for documents with LR estimates in the in-
terval [.9,1] was .881, the average estimate was .967,
so the estimation error was .967-.881=.086. This
is represented as the last data point on the dashed
line: (.967,.086).

the pool in each iteration, thus making a repetition of our
large experiment with SVMAL infeasible. We instead ran
a smaller experiment with 5000 documents in the pool and
20 classes. The average absolute errors were 36 and 38 for
the MaxMin Margin and MaxMin Ratio approximations of
SVMAL, respectively, vs. 37 for uncertainty sampling. This
indicates that SVMAL-based accuracy estimates of F are too
error-prone to be usable in reliable deployment decisions of
classifiers.

5. ANALYSIS OF EXPERIMENTAL
RESULTS

We use the sign test [26] for significance testing. It is a
weak test, but it turned out to be sufficiently sensitive for
our purposes. The number of paired samples is 215 (43 cat-
egories × 5 trials). We report the two-tailed significance
level p. The main result of the experiments is that Lewis’
estimator does not estimate F better than LOO. The other
5 methods perform worse than LOO, and all but method
SM do so significantly (p < 10−5). We performed a de-
tailed analysis for methods CM and LR. Figure 1 shows
that CM fails because it overestimates for positive decisions
(p̂ > 0.5), thus increasing the precision estimate, and under-
estimates for negative decisions (p̂ < 0.5), thus increasing
the recall estimate. Both overestimating for p̂ > 0.5 and
underestimating for p̂ < 0.5 amount to an overestimation
of the classifier’s certainty that its decision is correct and
therefore lead to large positive errors. Logistic regression
also has a positive bias for positive decisions (dashed line),
albeit a smaller one; but it overestimates probabilities for
negative decisions, thus underestimating recall. (The “neg-
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Figure 2: Distribution of relevant documents with
respect to estimated probability. Each bar corre-
sponds to the proportion of relevant documents that
receive probability estimates in the corresponding
range on the x-axis. 27% of relevant documents re-
ceive LR probability estimates of less than 0.1, in-
dicating the presence of missed clusters.

ative” interval [0.1,0.2] in Figure 1 only contains 17% of all
documents, so that the positive bias for the other intervals
dominates.) This explains why logistic regression has a large
underestimation error (-41) for recall.

For methods S, CM and SM, final probabilities are pro-
duced by a univariate logistic regression on a distribution of
scores with most values close to -1 or 1 (since the small ac-
tively learned training sets can easily be linearly separated
in high-dimensional space). As a result, probabilities are
close to 0 or 1 (i.e., in [0.0, 0.1] ∪ [0.9, 1.0]). This is true
for more than 99% of probability estimates for method CM.
In contrast, the multivariate logistic regression employed by
method LR produces many “uncertain” estimates: only 71%
of estimates are close to 0 or 1. This uncertainty results in
less optimistic precision estimates and pessimistic recall es-
timates.

The experiments suggest that it is hard, if not impossi-
ble, to estimate recall correctly based on ensemble methods
(C, CM) or methods exploiting the distribution of unlabeled
data (SM, CM). LOO performs best with an absolute er-
ror of 18. The other 5 methods perform significantly worse
(p < 10−5). An error of 18 or worse will make the deci-
sion of whether a classifier can be deployed or not subject
to high error when relying on LOO estimates. Recall esti-
mation is hard because of the missed cluster effect discussed
earlier. In the absence of information about whether there
are unexplored parts of the space with relevant documents,
an accurate assessment of recall is impossible.

In addition to missed clusters there are however other con-
ceivable causes for incorrect probability estimates for true

S SM C CM LR
LOO ≪ ≈ ≫ ≫ ≫
S ≫ ≫ ≫ ≫
SM ≫ ≫ ≫
C ≪ ≪
CM ≫

Table 2: Sign tests comparing error of precision es-
timates for 6 methods. ≪/≫ indicate a level of sig-
nificance of p < .01. ≈ indicates lack of significance.

and false negatives. In particular, a difficult decision bound-
ary could also give rise to poor recall estimation. In that
case, true and false negatives with incorrect estimates would
be located close to the decision boundary. Figure 2 shows
that instead, a large number of documents are located far

from the decision boundary (i.e., they receive LR estimates
close to 0). This indicates that the main culprit for poor
recall estimation is indeed the missed cluster effect.4

Despite the difficulty of recall estimation, methods based
on Lewis’ estimator should in principle be able to compute
unbiased estimates for the densely sampled space around
the decision boundaries and hence be able to estimate pre-
cision accurately. Indeed, three of the methods (C, CM, and
LR) are more accurate than LOO for estimating precision
(see Table 2). LR beats all methods but C. However, C
is the least accurate classifier: its F at 28 is less than half
of optimal. This is an example of the estimation accuracy
vs. unbiasedness tradeoff discussed earlier. C’s precision
estimates are unbiased, but it achieves this by only assign-
ing documents to the category that it is absolutely certain
about. As a result, it can estimate the precision it achieves
better than the other methods.

We conclude from these results that recall cannot be esti-
mated accurately, but that probabilistic methods like mul-
tivariate logistic regression can, in principle, estimate pre-
cision correctly. While 12 is still a large absolute error, we
have used the BBR system out-of-the-box without any tun-
ing. Additional optimization for accurate estimation of pre-
cision should improve this result.

6. RELATED WORK
[22] present a stopping criterion for AL, but they do not

address the issue of accuracy estimation. Having achieved
optimal performance is not a satisfactory deployment crite-
rion if that optimal performance is below minimum accept-
ability. Also, the arguments with respect to recall apply to
their proposed stopping criterion as well. No stopping cri-
terion can tell us for sure that recall has reached an optimal
level. Decidability is therefore not addressed.

There are other algorithms besides SVMAL that perform

4For LOO, over- and underestimation of recall almost bal-
ance out across classes (bias is -2). The missed cluster ef-
fect explains cases of positive bias. Negative bias can oc-
cur for highly non-redundant training sets. A document
that has no close neighbors is likely to be misclassified in
LOO. Rank correlation of [bias] and [number of documents
in the training set whose closest neighbor had a cosine sim-
ilarity of more that 0.15] (a measure of redundancy) was
0.54 (p < 0.001). This correlation supports the hypothesis
that non-redundancy and missed clusters are counteracting
effects in LOO, but further research on this issue is neces-
sary.



somewhat better than uncertainty sampling, but are also
computationally more expensive (e.g., [24, 6, 10]). We chose
the computationally most efficient AL method, uncertainty
sampling, because a fast querying method is important, so
that experts can be provided with the next document within
a few seconds of their last judgment, even if the pool is large.
Longer response times prevent concentration on the task at
hand [25]. An efficient implementation of uncertainty sam-
pling on a fast multi-processor machine meets this criterion,
even for a very large pool as it was used in this paper. The
pool must be large for learning small categories.

As in AL, learnability is also a problem for a combina-
tion of supervised and unsupervised learning [1, 17, 19].
We would like to extend our results to combination learning
strategies.

Bagging performed reasonably well for accuracy estima-
tion in [21]. However, the newsgroup categories used in this
study are taken from non-overlapping distinct corpora, e.g.,
politics vs. electronics newsgroups. Reuters categorization
tasks are more difficult since categories are overlapping and
correspond to more subtle human categorization decisions.
The difference between Naive Bayes and SVM may also play
a role. The accuracy/unbiasedness tradeoff implies that it is
harder to get accurate probability estimates for a classifier
with optimal (or close to optimal) accuracy.

[16] find that a disagreement-based accuracy estimator
performs well compared to LOO in a transductive learning
setting for balanced categories. This result is not directly
applicable to experiments where training and test set are
drawn from the same distribution and categories are “small”
(or unbalanced) as in this paper.

In this paper, we have investigated three performance
measures: F, P, and R. Another important measure is utility
(e.g., [32], where, as in our case, the complicating circum-
stance of a biased training set is investigated). We don’t see
any difference between accuracy estimation for F, P, and R
vs. utility in principle: It seems hard to conceive of an un-
biased estimator of utility that would not in turn rely on
unbiased estimates of relevance. The literature on filtering
has focussed on the decision p > θ where p is the probabil-
ity of relevance and θ is the filtering threshold. However,
estimates of relevance can be strongly biased (and therefore
unsuitable for accuracy estimation) even if they “answer”
the question “p > θ?” correctly. This question has not been
investigated in filtering as far as we know.

7. DISCUSSION

7.1 Unbiased estimation
We have argued that learnability and decidability are crit-

ical issues in practical text classification and investigated
unbiased estimation as a possible solution. The experimen-
tal results suggest unbiased estimation is hard. In fact, we
believe that there is no general solution to unbiased esti-
mation for small and biased sets as they are produced in
AL.

This is partly due to the missed cluster problem. If there
are important parts of the representational space that have
no representation in the small and biased AL sample, then
available information is simply not sufficient for estimating
a model that would be consistent with the true distribution
of relevant documents.

Another possible solution to accuracy estimation would

be to correct the bias. [13] quotes Catlett as suggesting
stratification as a bias correction strategy. Stratification is
effective if we have an independent characterization of the
strata, for example their true relative frequencies. However,
it is not clear with respect to what we can stratify in the
estimation problem at hand. Stratification with respect to
the document space is out of the question because of its
high dimensionality. An alternative that we have tested ex-
perimentally is to stratify with respect to the SVM scores
or probability estimates that are output by the classifiers
for the AL set. However, these attempts did not produce
better estimates of true performance than the Lewis’ esti-
mator used here. The problem is again the small size of the
sample which does not contain enough information to reli-
ably estimate the density of relevant documents, especially
in the “low probability” part of the space (low probability
according to the actively learned classifier).

If learnability and decidability are serious problems, why
have they not been addressed in previous work on AL? One
reason is that most experimental work has been done on a
few text collections with categories that have a straightfor-
ward correspondence between word distribution and cate-
gory membership. For example, most of the categories in
the 20 newsgroups corpus are defined by a set of words that
occur together, words such as “graphics”, “2D”, “3D”, “cir-
cle”, “bezier” for comp.graphics. If significant words co-
occur with each other enough, then AL can discover them
one after the other. Cases like the commodities cluster for
Australia will not occur. Recall is likely to be high after
a small number of iterations and those parts of the space
that contain relevant documents will be sufficiently densely
sampled to compute usable estimates.

The importance of decidability has not been realized be-
cause in most AL experiments the optimal performance for a
classifier is high and classes are learnable. In this type of sce-
nario, the typical number of iterations used in the literature
(50–100) is sufficient to learn the category with acceptable
performance. But this is an unrealistic assumption for prac-
tical text classification. In most cases, we don’t know what
the best possible level of performance is and many practical
applications have a mix of learnable and unlearnable cate-
gories.

We have shown that none of the methods tested here are
estimators that would produce a good estimate of R, and
hence F. The reason is that their probability estimates are
highly biased. We are not aware of other methods that pro-
duce unbiased estimates for small and biased training sets.
Our conclusion is that, except for those cases where a large
random training set is available in practical text classifica-
tion, Lewis’ estimator cannot be used to address the prob-
lems of learnability and decidability in AL.

7.2 Practical text classification
The alternative to Lewis’ estimator is evaluation on a ran-

dom sample. Indeed, most publications on text classifica-
tion evaluate experiments with respect to a held-out random
sample. They do not address the problem that such a held-
out random sample is usually not available in practical text
classification. In particular, it is not available in AL. AL
has therefore no built-in method for evaluating the success
of learning.

This means that neither of the two avenues for determin-
ing whether a category has been learned is available. Neither



random sampling nor unbiased estimation (and then using
Lewis’ estimator) is an option that is available as a generic
method in practical text classification.

However, if we are willing to make additional assumptions
or expend significant additional resources, then the dilemma
posed here can be overcome in certain situations. We con-
clude by characterizing some of the scenarios in which prac-
tical text classification problems can be solved even though
there is no large randomly sampled training set available.

• There is some kind of extrinsic validation of the clas-
sifier. For example, the cost of a non-performing clas-
sifier for the business may be low. One can therefore
deploy actively learned classifiers. Over time, a subset
will be identified as underperforming by means of the
extrinsic validation. These classifiers can then be re-
tired.

• For categories of intermediate size a strategy of mixed
random sampling and AL may be successful. AL makes
sure that the decision boundaries are learned well. Ran-
dom sampling discovers missed clusters. We can view
this approach as an exploration/exploitation tradeoff
where random sampling serves the purpose of explo-
ration and AL the purpose of exploiting each labeling
decision for maximal information about the decision
boundaries.

• If the category is large enough one may be able to
completely dispense with AL. The arguments in this
paper mainly apply to categories with small popula-
tion rates. Random sampling is a good alternative to
AL for categories with large population rates.

• Some tasks only require good precision. High recall is
less important. Web search is the classical example.
It is often evaluated by precision at a certain cutoff
– a measure that requires a minimum level of recall,
but is otherwise dominated by precision. As we argued
above, there is hope that methods for estimating pre-
cision with reasonable accuracy can be developed. AL
would then be a practical strategy for “precision-only”
tasks.

• The most promising avenue for addressing the dilemma
we face here is to avail ourselves of more domain knowl-
edge. In many cases, the classification problem is of a
much lower dimensionality than the high-dimensional
term space typically used for representation. If domain
knowledge can guide us towards finding this lower-
dimensional space, then different solutions become avail-
able. For example, stratification may become feasible
if dimensionality can be reduced sufficiently. Many
text categories are centered around a concept that is
consistently expressed with a small set of terms such
as the terms “Australia” and “Australian” in the case
of the category “Australia”. If we know that there is
such a small set of terms and if we can identify it, then
the dimensionality of the space that needs to be sam-
pled to assemble a representative set of strata can be

reduced. As a result, reliable estimates of performance
can be computed by way of stratification.

We conclude from our experiments that AL is not a gen-
eral solution to the problem of practical text classification.
The key to practical text classification is to bound the area
of applicability of AL, the method of choice for creating the
training set in supervised text classification. It is therefore
important to characterize scenarios where AL is applicable
and the problems of learnability and decidability can be ad-
dressed.
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