Floating Point to Fixed Point Conversion of C Code

Andrea G. M. Cilio and Henk Corporaal

Delft University of Technology
Computer Architecture and Digital Techniques Dept.
Mekelweg 4, 2628CD Delft, The Netherlands
A Clio@ts.tudel ft.nl H. Cor poraal @ts.tudel ft.nl

Abstract. In processors that do not support floating-point instrutjousing

fixed-point arithmetic instead of floating-point emulatimades off computation
accuracy for execution speed. This trade-off is often pabfé. In many cases,
like embedded systems, low-cost and speed bounds makedhipacceptable
option. We present an environment supporting fixed-poidiecgeneration from
C programs. It allows the user to specify the position of theaty point in the

source code and let the converter automatically transfavatifig-point variables
and operations. We demonstrate the validity of our approach series of exper-
iments. The results show that, compared to floating-poixegfipoint arithmetic

executed on an integer datapath has a limited impact on theay. In the same
time the fixed-point code is 3 to 8 times faster than its edeiafloating-point

emulation on an integer datapath.

1 Introduction

In order to meet the increasingly tight time-to-market constraints, gederation for
complex embedded systems is shifting towards high level languages aaccood
pilation. The C language, although not ideal for embedded applicatioaspapular
imperative specification language as it combines the capabilities of a tyfitahith
low-level assembly language features like bit manipulation. Furthesp@has become
the de factostandard specification language of several international standards: for ex-
ample MPEG (IEC 13838)[9] and ADPCM (G.722)[7].

One of the limitations of C is that it does not support fixed-paiteger types. For
embedded systems in which tight cost constraints do not allow the dieatig-point
hardware, using a fixed-point version of the algorithm to implemeaniattractive al-
ternative to floating-point software emulation, for which the repdmverhead ranges
between a factor of 10 and 500 [6]. Often, the trade-offs between an algarithm
plementation using floating-point software emulation and a fast, dimstaccurate,
fixed-point algorithm favor the latter solution.

In manual fixed-point programming the designer replaces the floatindg pain
ables with fixed-point ones, encoded as integers. To avoid overflows anderéae
loss of precision he must scale the integer words. Determining thdauof shifts is
known to be error prone and time consuming. Automatic conversion floating-point
to fixed-point is an attractive alternative, addressing these problems.

This paper presents a design environment that supports semi-autonmgrion
of floating-point code into fixed-point. The user is allowed to spethfy fixed-point

3130 26 0
|O|11101101000011 01 01111 001 01 00O0OO01 1

S | IWL | FWL = WL-1-IWL |
| I |

Fig. 1. Signed fixed-point representatioW{. = 32, IWL = 4) of the floating-point number
14.631578947368421. The accuracy of the fractional part is equivalent to 13 metidigits.

representation of selected, critical floating-point variables; a tool cébetfixauto-

matically performs floating- to fixed-point conversion of the remairfingting-point

variables and inserts the appropriate scaling operations. The code gemearathen
map the converted intermediate representation (IR) into a target instngett that sup-
ports only integer arithmetic.

The rest of this paper is organized as follows. Section 2 reviews the taiscepts
of fixed-point arithmetic and introduces our approach to the specificafitredixed-
point type of a variable in C source code. Section 3 describes the codftraatons
performed byfloat2fix In Sec.4 the code transformations are tested on a number of
benchmarks. Section 5 presents a survey of research on automatic fixeaqubént
generation from C. Finally, Sec.6 concludes this paper and summarizes itdbaeont
tions.

2 Representation and Specification of Fixed-point Numbers

In this section we review some basic concepts related to fixed-pointreaiih and we
address the issue of how to specify the fixed-point format in the @sou

2.1 Fixed-point representation

A fixed-point number can be thought of as an integer multiplied by astywotwer with
negative exponent. In other words, the weight 1 is assigned to #hieit than the LSB
of the word, and the bits to the right of that bit represent the fraetipart of the
value. We can associate a fixed-point type to this representation. Thenahisét of
parameters that determine a fixed-point type are the signedness, therigthl of the
word WL and the length of its integer pa®tjVL. The fractional word length of a 2’s
complement numbet is thus FIWWL = WL — IWL — 1 and the value represented by
its bits,awr,_1,...,aq iS:

WL—-2
a = ((lWL12WL] + Z (l7'21> . QFWL (1)
i=0

Figure 1 shows the signed fixed-point representation of a numbevalbes ofiVL and
IWL determine two important properties of the fixed-point representatierange of
representable numbefsand the quantization step:

R = [-2!WL 9IWL). Q = 2~ (WL—1-1WL)

! Note that we do not consider the sign bit a parf GfL.

Two more parameters must be specified to describe at source level thaeebiitetr
havior of a fixed-point typecasting modendoverflow modeThe casting mode spec-
ifies what happens to a fixed-point number when it is shifted to righs.|@ast signifi-
cant bits can be ignordtruncate modedr used to round off the number. The overflow
mode specifies how to handle the result of a fixed-point operation tieafilows. The
most significant bits can be discardgdap-around modedr the result can be replaced
with the maximum value that can be represented with that fixed-point(sgieration
mode)

In our opinion, a bit-true specification at the source level, whichtimetude over-
flow and rounding mode, has little use; the target machine dictates whatearadst
efficient type parameters and thus the behavior of fixed-point operatiopsactice,
if a particular behavior is not supported in hardware, it must be emuiatsdftware,
and this is highly inefficient. Emulation is thus hardly acceptable iniegfbns where
the focus is on performance. On the other hand, if the designer can exipéotarget
architecture solution space, he might want to change the specifics of castadwon
overflow mode of the target machine without having to change the soadwin order
to adapt it to the new fixed-point parameters. For these reasons, we dexldeddst-
ing and overflow be target-dependent aspects and define a fixed-point typeydtd
WL andIWL.

In the following discussion, we will consider only signed fixedfaamumbers and
a unique value of¥/L. In [1] we discuss how to implement code generation for types
with user-definabléVL. We consider supporting unsigned fixed-point types a straight-
forward extension that adds little to the approach presented in ttesvialy sections.

2.2 Fixed-point arithmetic rules

The following rules specify the format of the result of a fixed-pairithmetic operation
¢ = axb. TheIWL of the result is derived from the fixed-point representation (1).

Addition and comparisonTwo fixed-point numbers can be added or compared by a
normal integer unit, provided the position of their binary poifgghe same. If the
source operands have differdii¥’L, the word with the smallef\WWL must be scaled so
as to align the binary point positions:

IWL. = max{IWL,, IWL,})

Multiplication. The two’s complement integer multiplication of two words yields a
result of2WL bits. Thel WL of the result is given by:

IWLe = IWL, + IWL, + 1 3)

Notice that the second most significant bit of the result is norma#lyy guduplicate of
the sign bit and WL, + IWL, bits are sufficient to represent the integer part of the
result? In many processors, integer multiplication returns only the loWér bits. The

2|t is easy to verify that the two most significant bits of theut are not equal only if both
source operands are2"".

upper part is discarded and overflows can be signaled. The reason for thét is t
high-level languages multiplication maps two source operands oféntgge into a
destination of the same type, therefore compilers do not generate co@aphaits the
precision of a full result. In a fixed-point multiplication this befa is not acceptable,
because the upp@¥L bits of the result contain the integer part of the number. There
are three alternatives to obtain the upper half of the result:

1. Make the upper part of the result accessible in the source code.
2. Scale the source operands before multiplying so that the resufitwil WL bits.
3. Implement the fixed-point multiplication as a macro computing thgeupart.

The first alternative, used in [13], is convenient when the target archiesgper word

is also accessible. However, this approach requires custom adaptationsdoribiéer.
The second approach, calladeger multiplication shows poor accuracy. The last ap-
proach can be very accurate at the price of additional computation. Our corsugter
ports the latter two alternatives, but leaves the possibility to effilsienap multiplica-
tions to target processors in which the upper part of the result is aclessib

Division. Two fixed-point numbers can be divided using a normal integer dividem
(1) follows that thel WL of the result is:

IWL, = WL — 1+ IWL, — IWL, = (4)

The division is the trickiest of the fixed-point arithmetic operaioWithout careful
scaling of the source operands, the chances to loose accuracy are very higa thad

if the IWL of the denominatof WL, is small, then the accuracy of the resultis poor. If
IWL, > IWL, the result cannot even be represented withiabit word. In this case,
we must clearly insert scaling operations to reduce the resuliiif. In Subsec.3.3 we
present some strategies to limit the loss of accuracy in fixed-poiisioins.

2.3 Fixed-point specification

Our fixed-point specification does not require special adaptations to theileoifnont-
end and igransparento the compiler. The user specifies the valuefdrL of f | oat
anddoubl e variables by means of annotations introduced by a resetpedgna
directive. This directive is ignored by a compiler that does not recogmnjzbus the
same source file can be used for both floating-point and fixed-point ¢atopi The
user can also specify thBVL of arguments of external functions, as shown in the
example below.

Example 1 (Specification of fixed-point variables and functions).
doubl e si n(doubl e);
float signal out[100], *inptr;
#pragma sui f _annote "fix" signal out 5
#pragma sui f _annote "fix" sin 8 1

The base type of the arraji gnhal _out is a fixed-point integer witH WL = 5. The
fixed-point type of the pointarn_pt r will be determined by the converter using data-
flow information. The functiorsi n() takes a fixed-point argument withVL = 8
and returns a fixed-point result with?’L = 1. O

The user is expected to annotate all floating-point variables for whidixée-point
format cannot be determined by the converter using the static analysie pfagram
described in Sec.3. Note that floating-point variables initialized withasimt need not
be annotated by the user, becafleat2fixcan determine their fixed-point format from
the constant value. For all the intermediate values, like compiler defingubrames,
the fixed-point format can be determined from the format of the otheramyist

3 Fixed-point conversion and code generation

In this section we present a general view of our code generation environmignspe-
cial attention for the aspects specifically related to floating-point to fix@dtgode
conversion. Then we describe in more detail our conversion fadi2fix and we
demonstrate the code transformations involved through an example.

3.1 The code generation environment

The conversion to fixed point uses the SUIF (Stanford Universigrinediate Format)
compiler [4] and takes advantage of its flexible intermediate represent&ti@UIF

new unique types can be defined by adding annotations to existing fipiesnables

us to extend the IR with a fixed-point type system without any chamgfget compiler.
Figure 2 shows the passes necessary to generate fixed-point code folgetiatahi-
tecture, calledMOVE, from a C source. The designer starts with the manual annotation
of f| oat anddoubl e variables, as explained in Sec.2. This annotated source file is
translated into SUIF IR by the front-end. Our converflrat2fix is run immediately
after the front-end. It reads the annotated IR and translates it to a fixat{paeger
encoded) IR (see (a) in Fig.2) that can be converted back to a C integer sousce. Th
source can be compiled lgcc-movento fixed-point MOVE code (b). The annotated
source file can also be directly compileddpyc-movénto floating-point code (c) (either
hardware-supported or software emulated). This allows to run sironktind perform
comparisons between the two versions of the algorithm. The user carat/tie per-
formance and the accuracy of the fixed-point code and adjust the fixedfpoimat

of the variables. An alternative path to code generation (d), not yetifujiyemented,

will use the SUIF based back-end and will be able to recognize fixed-ptrtiction
patterns (like shift-operation-shift) and map them into dedicateduicsbns.

3.2 Fixed-point conversion

Float2fixis implemented as an IR-to-IR transformation pass that translates the SUI
representation of a floating-point program annotated by the user inteed-fioint
equivalent in the following steps:

1. It generates and installs the fixed-point types specified by the usedsadions.
The type of the annotated variable is updated to the new type.

annotated floating-point
C source

SUIF front-end
(@

float2fix -— IR

s2c

fixed-point
C source

(back_end) (gcc-move) (gcc-move)
@4 ®y ©

MOVE code MOVE code
fixed-point version floating-point version

N/

[simulator/scheduler]

performance comparison

Fig. 2. Code generation trajectory.

2. It converts floating-point constants to fixed-point format andalisthe corre-
sponding types. If the constant is not linked to an annotated variableitatefj
its fixed-point format is determined by:

IWL = max{[log, |constant|],0}3

For initialized arrays|constant| is replaced withmax; {|constant;|} wherei is
the index of the array element.

3. It propagates the fixed-point format along the instruction trees. difjects that
may need type conversion are: variables that the user did not annotate, compiler
generated temporary variables, and single definition-use values (edges iaf th
struction tree). Thd WL of these objects is determined by applying rules (2,3, 4)
and the techniques to be presented in Subsec.3.3.

4. It inserts the appropriate scaling instructions to align the Bipaint of source
operands or to convert from one fixed-point type to another.

Figure 3 illustrates the last two transformations on a statement takendne of the
test programs of Sec.dcc += (*coef ptr)*(*data_ptr). This expressionis
shown as a graph in which the nodes represent instructions and the lemxesent
variables. Edges represent definition-uses of data. Next to every edge tigoth of
the transferred datum; the first letter indicates whether the type isrftpatint (f) or
integer (i), the following number indicates the wordlengtil.. Enclosed in square
brackets is the value off¥’L. Note that a 32-bit nt type would be described with

% Notice that we could allowegativevalues of[WL, i.e. numbers whose binary point falls out
of the word. An analogoue extension is possible to reprasembers for whichk WL > WL.

@ [coef_ptr|| data_ptq (b) | coef_ptr|| data_ptr|

v v ¥ v
(f-32) (f-32) (.32)4] | (.32)[0] (i:32)[4]

acc @ D call mulh()
(f.32) (f.32) .
< (.32)[5] (1-32)(5]
(f.32)

(i.32)[5]

(i.32)[4]

acc

acc

Fig. 3. Example of code transformation on a SUIF instruction tregresenting:acc +=
(*coef prt)*(*data_ptr).(a)Original tree. (b) Transformed tree.

(.32)[31]. The fixed-point multiply is translated to the macroanationmulh(a, b),
that computes the upper part of the integer multiplication using drikeofollowing
formulae

ap * by, + ((an * by + a; * by) >> 16) 5)
ap * by, + (((an x by + ap = bp) + (a; x by >> 16)) >> 16) (6)

where
ap = a >> 16; a; = a & OxFFFF

Note that (5) introduces some approximation due to the fact that tidupt between
the lower parts is disregarded; in (6) the first shift is unsigned.

3.3 Precision-improving techniques

Hereby we present a number of heuristics that improve the precisionaitaiwith
fixed-point arithmetic operations.

Multiplication. As stated in Sec.2, one bit of the result’s integer part is a copy of the
sign bit and conveys no additional information. We can therefore scaa tite result
by one position. This gives us one additional bit for the fractiqueat. Moreover, a
chain of multiplications automatically converted to fixed-point can producesult
with unnecessarily highiWL and therefore little accuracy. By scaling the result we
alleviate this problem.

Another important improvement is possible for macro (6) when therdesin of
the multiply is a fixed-point variablé, and thel WL of the result, as computed by (3),
is higher thanfWWL,. In this case, we can modify the macro so that it computes exactly

4 These formulae are valid fa¥’L = 32.

the bits that are to be found ih GivenD = IWL, + IWL, + 1 — IWLg4, the modified
macromulh(a, b, D) is

((ah * bh) << D) + (((ah * by + ap * bh) + ((al * bl) >> 16)) >> (16 — D)) (7)

Division. Equation (4) summarizes the difficulty of fixed-point division: a dexinator
with small /WL, with respect ta/ WL, yields very poor accuracy. The solution is to
scale the denominator and incred3$€L, before performing the division. This is nec-
essary whenWr, > IWL,, as the division would otherwise produce an overflow.
When the denominator is a constant valigit is possible to shift out the least signifi-
cant bits that are ‘0’ without introducing any loss of accuracy. We can extga idea
by computingErr4.n0m, the error caused by shifting out thdeast significant bits of
the denominator:

Errdenom = anl:O/(B - anl:O)

whereB,,_1.q is the unsigned integer value represented byrtheast significant bits.
We can then compare this error with the maximum quantization error ofebltr
Errg, and estimate an amount of shifting that minimizes bBtit ..., and the po-
tential quantization error. This approach can be further generalized into stietivat
can be applied to variable denominators. We compute the amount ohghiiing the
following expression

[(FWL) - a] (8)

« is a parameter representing the aggressiveness of scaling; it is the fraichite of
the fractional part that have to be shifted out. The above expressies into account
both Errgenom and Errg. Although this technique is risky, in that it may introduce
spurious divisions by zero, it turned out to work very well in practias,shown in
Sec.4. Example 2 demonstrates the idea

Example 2 (Scaling the denominator to improve division accur&ypsider the oper-
ationc = a/b wherea, b are the fixed-point numbers whose value dWdL are shown
in Fig.4. An integer division delivers zero as quotient, and thié(& error. The same
result is obtained ib is shifted one position right. If we scabeby 2 to 5 positions, we
are shifting out zeroes and we cannot loose accuracy. Shifting out thé biits gives
invariably0.25, which corresponds to an error t8%; shifting by 5 position drastically
improves the accuracy}.28125 (1.72% error). Shifting out the first ‘1’ in the sixth
position, does not affect the result. Shifting out all the subsedQ&hits steadily im-
proves the accuracy: by shifting 8 positions the error becdirgs%, by shifting 11
positions0.01%. By shifting out 12 bits the error increasesd2%. From this point
on, shifting more bits makes the accuracy smaller, because the new |eéfstaig bits
computed are erroneous. Only when we start to shift out the three igosficant ‘1’
bits Errgenom increasingly offsets the reduction of quantization error, and the overall
error rises up t@6%. If also the last non-zero bit dfis shifted out we have a division
by zero. The macro that we implemented will replace it with the largest nuthbér
can be represented with'L bits. O

3130 23 0
|o|000000001000001oooooo 0110010 0001|a

|o|000000001000011100001ooo 0010 oooo|b

|0|00000000000000000000101001001010|c

Fig. 4. Example of fixed-point division between= 0.015720487 andb = 0.054935455; the
fixed-point format of the result = 0.28616285 is the most accurate one among the many that
are possible foa /b.

4 Experimental results

In this section we present experimental results of our fixed-point cedergtion tra-
jectory and we compare them with two possible floating-point impleatanmts. The
chosen test applications are FIR, a 35th-order fir filter and IIR, a &ikrdir filter
[3]. Both have been coded usifig oat variables and then converted to fixed-point C,
compiled, scheduled and simulated. We tested four versions of the pregram

1. fp-hw Floating-point implementation using floating-point unit.

2. fp-sw Floating-point implementation using software emulation.

3. fix-s Fixed-point implementation using integer multiplication (see Sec.2)
4. fix-m Fixed-point implementation using invocation to multiply macro (5).

Table 1 shows the accuracy and performance of these four versions. Eadiomesy s
the results for the version whose name is in the first column. Tlodeayounts in
columns 2 and 6 were obtained by scheduling the code on a processor wistdl-2 |
store units, 2 immediate units, 2 integer units an a floating-paiitt (FPU). In this
architecture the FPU supports double-precision only. fTheat source operands are
extended when loaded from memory. Columns 3 and 7 show the number &smov
This relates to a peculiar characteristic of our target architecture: data trés)spo
moves, are explicitly programmed [2]; we roughly need 2 moves per bREBG-like)
operation. Our target machine has 8-move busses and therefore can execntk4arou
instructions per cycle. The fundamental unit of ‘control’ of the preoeds the data
transport, as opposed to the machine instruction. Columns 4 and\8sb@ode static
size. As accuracy metric we chose the Signal to Quantization Noise RatiREQ
defined as follows:

SQNR = 10log;, <%>

whereS is the average of the signal’s absolute value ahi$ the average of the error,
defined as the difference between the original signal and the quantized Sighahn
5 and 9 show the SQNR of the last three implementations in compari$p+hte. From
these results we can draw the following conclusions:

FIR Filter IIR Filter

Version| Cycles Moves Instr. SQNRCycles Moves Instr. SQNR
fp-hw | 32826 86862 66 — 7422 22367 202 -
fp-sw 151849 542200 170 70.9 dB9192 107410 258 64.9 dB
fix-s 23440 102426 58 33.1dB5218 27861 61 20.3dB
fix-m 39410 175888 68 74.7dB8723 51899 81 55.1dB

Table 1. Performance and accuracy results for the test applications

[N

. For both programs, the speedup factor of fixed-point implementatigative to
fp-sw is large, above 6 for fix-s, above 3 for fix-m. Good resourcézation con-
tributes to this result: in fix-m, for example, the machine buses wesg 5% of
the execution time in FIR and 74% in lIR.

2. The SQNR of fix-s implementations is poor, whereas fix-m FIR shovegia of
74dB, which is acceptable in most applications. For IIR the accuracy oétuts
is not completely satisfactory.

3. The SQNR ratio of fp-sw implementation shows that it introduceseserror com-
pared to fp-hw. This is due to the fact that the software really emufdtest
values, whereas the FPU uses double precision.

4. Remarkably, in FIR the SQNR of fix-m is higher than that of fp-swsT& due to
the fact that, for floating-point numbers that have a small exportenfjted-point
representation can use up to 31 bits for the fractional part, whereas liroat
(IEEE 754) only 24 bits are used to represent the significand.

5. The execution overhead due to macro (5) is 68% respect to fix-s. Thiaied that
the compiler and the scheduler were effective at optimizing the code and mgduci
the impact of the macro computations. In particular, a feature related expiieit
programming of moves, namedpftware bypassingreduced the register pressure
to a level very close to that of fix-s.

6. In IIR the scheduler did not find enough parallelism to keep the 8 bimssgsin

the fp-hw implementation. As a result, fix-m is only slightly skwvwhile fix-s

outperforms fp-hw. These cases suggest the use of more accurate méer¢s) i

and (7).

We tested some of the precision improvements presented in Subsec.3s8alByg
down the result of (5) by one bit we obtained a 9% cycle count reduetimhat the
same time measured an improvement of accuracy.1B. More tests remain to be
done using macros (6) and (7).

Scalability of converted fixed-point codehe high level of parallelism allowed by the
target configuration used in the tests is somewhat biased towards fixgtdepde,

5 Software bypassing is a technique whereby a transport fhemesult register of a functional
unit to the functional unit that uses it is explicitly progrened, bypassing the write and read
of a general purpose register.

T
T T T T T T
0 5 10 15 20 25 30

Cycle count increase relative to fp-hw, 8 busses
| Bip-hw Ofix-s Wfix-m Ofp-sw |

8 busses 4 busses 2 busses

Fig. 5. Scalability of the four program versions.

which shows a higher amount of inherent parallelism. To verify thisywea num-

ber of tests with smaller target configurations on FIR, to see how mucadnhto re-

stricted resources have on the overhead of the fixed-point implemenstésien Fig.5).
Reducing the number of busses and integer units by half increased thecoydieby

76% and 44% in fix-m and fix-s, respectively, whereas fp-sw resulted ofysiower.

This suggests that fp-sw does not scale with the machine resources avelffeasi

a fixed-point implementation. One of the reasons is that floatingtjpgiarations are
implemented by function calls, which reduce the scope of the scheduleheQsther
hand, fixed-point conversion introduces operations in the expretsies without af-
fecting the scheduling scope. As a result, fix-m is still 4.4 times falsser fp-sw. Even
on a minimal configuration with two busses, fix-m is 3.7 times faster.

Notice that the tests of all versions were performed on the same procesdgimu-
ration. Since the integer versions do not use the FPU, this choidassedtowards the
fp-hw version, since the expensive resources utilized by the FPU, tofgaem, could
be invested in more busses and integer units.

Accuracy of division Although the test programs did not contain fixed-point divisions,
we also measured the accuracy attainable with the heuristic (8). We pedanarge
number of fixed-point divisions on random values and collected statistital Usually
floating-point operands of real programs are not randomly distriboted the entire
range; to accountin part for this, we added a parameter that determines thetatien
range of the random distribution for the numerator and the denoorirkégure 6 shows
the results when the largest number is smaller thar{/ WL = 1 bit). On the X axis is
the value of the heuristic’s parameter,On the Y axes is the error introduced by the
fixed-point conversion, expressed in dB. As one can see, the precisioifysieer@ases
for all versions up tax = 0.4. For high values ofy, the error due to coarse quantization
of the denominator offsets the accuracy gained due to a smal@r for the result.
The effect of the heuristic is less pronounced Wi&L is larger. As a limit case, the
heuristic gracefully degrades to integer division when the range tf bperands is

WL — 1, and we obtain flat curves with integer precision, which entirely depenten t
ratio.

[dB]
o ratio 10
40 { * ratio5
© ratio 1 ’
e ratio 0.2
301 * ratio0.1

, [a]
0 0.1 0.2 0.3 0.4 0.5

Fig. 6. Effect of heuristic (8) on division’s accuracy.

5 Related work

In the last years the field of automatic conversion of C programs fromirilpgioint

to fixed-point has gained much attention. This is due to the appearancgitef dig-

nal processors offering hardware support for fixed-point arithméitie the popular
Texas Instruments’ TMS320C50). Usually, the design of a fixedtdgorithm starts
with floating-point code which is then converted to fixed-point, maguailin a semi-
automatic fashion. Two alternatives have been considered regardingiatternof the

fixed-point format of a floating-point variable:

1. Instantiation at definition timévolves a unique instantiation at the location where
the variable is defined.

2. Instantiation at assignment timequires that the optimal format be determined
every time the variable is assigned.

According to Willems et al.[14], the implementation of algorithms $pecific tar-
get machines requires a bit-true specification at source level. This speaoiiicat then
be transferred into a HDL or a programming language. In [11] he pregpanon-ANSI
extension to C in which two fixed-point parameterized types are introdddelfirst
allows the user to instantiate the fixed-point format of a variable atitiefi time. With
the second, more flexible type the converter determines the best forasgighment
time. This approach leads to very accurate fixed-point conversion. The belte
operators on the new types is fully specified, including overflow hagdind rounding
modé . The user is free to specify the fixed-point format for some variabledeirie

8 1n ANSI-C these aspects are dependent on the implementation

converter determine the format for the remaining ones. This result is\sathby prop-
agating the known formats along the data-flow graph and by profilinfijaagéng-point
variables left unspecified by the user. Statistics of these variables are edllscmneans
of a hybrid (floating-point and fixed-point) simulator and are useestimate the opti-
mal number of bits for the integer and the fractional parts. The prosésteractive: the
converter can ask the user to supply additional data when the informagdalae is
not sufficient. Once the fixed-point format of all the variables has beenrdieted, the
conversion tool can generate new ANSI-C code based only on integers witrethe
appropriate scaling and masking operations. An open question is howamatbmpiler
optimizations reduce the overhead due to integer bit-true transfamsawhen gener-
ating code for a specific target. Also, it is questionable whether astetontrol of the
algorithm at the source level is “cost-effective”. The target machine in fatatdis what
are the most efficient overflow and rounding modes. Software emulatiardifferent
behavior is inefficient, hardly acceptable in implementations for which diatspeed
is critical.

One disadvantage of the instantiation at assignment time used by Wiltethat
it requires two specific simulators: a hybrid and a bit-true simulatbe former, as
mentioned above, is needed for profiling, the latter to simulate the accofag ap-
plication on the target processor. Another complication comes fromgusinthe con-
verter must estimate the result of loads and the values that might havestoeea into
a location. The fixed-point format of all the possible values must Hgecombined.

In [13][8] Sung, Kum et al. propose an automated, fixed-point transition method-
ology based on profiling. Also in this case, the user can specify the figgd-format
of selected variables. The range, mean and variance of the remaining variables are mea-
sured by profiling. A range estimator [12] uses the collected statistataltd determine
the optimal fixed-point format. The conversion uses the concegéefifition time in-
stantiationonly. The authors focus on specific target architectures (TSM320C5Mx) wit
dedicated hardware for fixed-point arithmetics. Moreover, their approacliresaqus-
tom adaptations to existing compilers. Their results show that fixgdtprograms
using 16-bit integer words are 5 to 20 times faster than the softwaatifly point sim-
ulation. The speedup drops to a factor 2 when 32-bit fixed-point wanelsised.

The simulation based format determination, used in both mentionedagyps, has
two disadvantages. One of them is that it depends on the profiling dgiat A more
serious problem s thatit is slow, as the optimal fixed-point formdeitermined running
several simulations for every single variable. The estimator is tylgitaplemented by
means of C++ classes, which introduce a severe overhead compared to a bas@]type [

Our approach differs in several aspects from the above described ones. Tdeaftho
definition time instantiationsubstantially simplifies the algorithm. Also, it contributes
to more efficient code, as the number of shift operationsis likely to lz¢lemAlthough
we do not support profiling to determine the fixed-point formad, ibsults showed that
static analysis and the described heuristics can deliver the same accurady, &l
differently from the other approaches, we generate machine code for aaxgd space

[5].

6 Conclusions

Data type conversion of a floating-point specification to a fixed-pgeatsication has
been implemented and tested on two digital filter algorithms. We devisedadalter-
natives for fixed-point multiplication. The results show that treslof accuracy due to
the fixed-point representation is highly dependent on the implementaftithe multi-
plication. With the most accurate alternatives, we obtain a Signal to @zatioh Noise
Ratio of 74dB and 55dB with respect to a double-precision, hardwaresigoiimple-
mentation. For one test program, the comparison with a floatingtpoplementation
on an integer datapath (software emulation) showed that, depending lenehef par-
allelism sustainable by the target machine, a speedup factor from 3.7irdeBieved
with the more accurate fixed-point version, and a speedup from 8.2 twith $he less
accurate one, compared to floating-point software emulation.

The accuracy and the execution speed attained in the experiments show that the

approach presented in this paper is promising. The results encourageargitaie in
the direction of fine-tuning the heuristics and generating code for sprlalargets
with direct support for fixed-point, like shifters at the functionait inputs and access
to the upper part of the integer multiplication result.

References

[1] Andrea G. M. Cilio. Efficient Code Generation for ASIPstiwvDifferent Word Sizes. In
proceedings of the third conference of the Advanced Scbhod@dmputing and Imaging
June 1997.

[2] Henk Corporaal. Microprocessor Architectures; from VLIW to TTAlohn Wiley, 1997.
ISBN 0-471-97157-X.

[3] Paul M. EmbreeC Algorithms for Real-Time DSHPrentice Hall, 1995.

[4] Stanford Compiler GroupThe SUIF Library Stanford University, 1994.

[5] Jan HoogerbruggeCode Generation for Transport Triggered Architecturd2hD thesis,
Technical University of Delft, February 1996.

[6] Loughborough Sound Images. Evaluation of the perforreaof the c6201 processor &
compiler, 1997. Internal paper: http://www.Isi-dsp.ddabx/tech.

[7] International Telegraph and Telephone Consultativen@ittee. General Aspects of Digi-
tal Transmission Systems. Terminal Equipments RecomntiendzG.700—-G.795. Interna-
tional standard, CCITT, Melbourne, November 1988.

[8] Wonyong Sung Jiyang Kang. Fixed-point C compiler for TB2BC50 digital signal pro-
cessor. Improceedings of ICASSP’97997.

[9] Joint Technical Committee ISO/IEC JTC1/SC29/WG11. MET 13818 “Information
technology — Generic coding of moving pictures and assediatidio. International stan-
dard, ISO/IEC, June 1995.

[10] Stanley B. Lippmaninside the C++ Object ModelAddison-Wesley, 1996.

[11] Thorsten Grotker Markus Willems, Volker Bursgengidtieinrich Meyr. FRIDGE: An In-
teractive Fixed-point Code Generator Environment for HW/SoDesign. Improceedings
of the IEEE International conference on Acoustic, Speech Signal Processingoages
687-690, Miinchen, April 1997.

[12] Ki-ll Kum Seehyun Kim and Wonyong Sung. Fixed-point @gkation Utility for C and
C++ Based Digital Signal processing Programsprioceedings of IEEE Workshop on VLSI
Signal ProcessingOctober 1995.

[13] Wonyong Sung and Jiyang Kang. Fixed-Point C Languag®fgital Signal Processing.
In Twenty-Ninth Annual Asilomar Conference on Signals, Sys#nd Computer©ctober
1995.

[14] Markus Willems, Volker Birsgens, Holger Keding, Thtem Grotker, and Heinrich Meyr.
System Level Fixed-point Design Based on an Interpolatigprdach. InDesign Automa-
tion Conferencel997.

