
Tailoring UML Activities to Use Case Modeling
for Web Application Development

Alexander Lorenz, Hans-Werner Six

Department of Mathematics and Computer Science, FernUniversitaet in Hagen
58084 Hagen, Germany

{Alexander.Lorenz, HW.Six}@FernUni-Hagen.de

Abstract

UML activity models (activities, for short) have
become widely accepted for specifying the dy-
namic behavior of use cases. For an adequate
specification of use cases in the context of interac-
tive systems, however, activities must be adapted
in several aspects. We present a tailoring of activi-
ties to these needs yielding so-called interaction-
oriented activities. From such activities we derive
two kinds of activities focusing on the develop-
ment process. The first activity is a user-friendly
variant that is devoted to the requirements engi-
neering stage. The second activity is obtained by a
smooth transformation of the first one. It is a more
detailed variant serving as a software specification
guiding the implementation. We demonstrate how
the latter activity can systematically be mapped to
a specific target platform. As an example platform
we choose J2EE with Web tier based on the
framework Struts.

1 Interaction-Oriented
Activities

In recent years, UML activity models [3] have
become widely accepted as a means for the speci-
fication of use case behavior. However, activities
must be refined before they can successfully be
applied to the context of interactive systems. To
this end, we present interaction-oriented activities

Copyright © 2006 Alexander Lorenz and Hans-Werner
Six. Permission to copy is hereby granted provided the
original copyright notice is reproduced in copies made.

that modify and enhance their predecessors [1, 2]
and make them UML 2.0 compliant.

For a sufficient comprehension of the proper
meaning of an activity diagram, the information
which tasks are performed by the user and which
by the system, should become clear at first glance
(see e.g. [6, 7]). Furthermore, the information
displayed on the screen during the course of an
interaction must also be captured by any useful
model specifying the interaction between a user
and the system. According to Cockburn [6], a
simple, not very detailed notation of “semantic”
information – mainly dynamic generated content
– is appropriate for that purpose.

We therefore introduce a distinction between
“user actions” and “system actions” by defining

Figure 1: Interaction-oriented
activity diagram

two stereotypes «UA» and «SA» for “user action”
and “system action”, respectively. Additionally,
we use note symbols, so-called scenes that are
attached to user actions and consist of semi-
formal text describing the screen information
needed by the user to perform his/her action. A
scene basically depicts information provided by
the system and / or entered by the user, and a list
of buttons and / or links.

Figure 1 shows an interaction-oriented activ-
ity diagram that models the behavior of a use case
describing a simplified ordering of books at an
online-store.

2 Tailoring Activities to the
Development Process

With regard to the development process we pro-
pose two kinds of interaction-oriented activities.
The first one is devoted to the requirements engi-
neering stage, while the second one serves as (part
of the) detailed software specification driving the
implementation process.

2.1 User-Oriented Activities
Activity diagrams suitable for requirements engi-
neering should be of low complexity and as non-
technical as possible so that users or at least
trained domain experts are able to understand and
validate them.

To this end, we introduce so-called user-
oriented activities that focus on user comprehen-
sion. Only for didactical reasons, we explain the
modification in terms of mapping an interaction-
oriented activity to a user-oriented activity. Actu-
ally, we have introduced interaction-oriented ac-
tivities only for the purpose of providing a basis
from which more refined activities can be derived.
So we do not use (plain) interaction-oriented ac-
tivities in real life but always start the develop-
ment process with user-oriented activities.

The mapping comprises of two steps, each of
which reduces the complexity of an interaction-
oriented activity diagram. The first step minimizes
the number of system actions in the diagram. The
motivation stems from our experience that users
are more interested in what they have to do rather
than in what the system has to do. We therefore
omit trivial or non-relevant system actions like e.g.
“save user input”. Furthermore, any continuous

sequence of system actions is merged into a single,
more abstract system action.

The second step concerns decision nodes and
again is divided into two parts. In many Web ap-
plications, for example, a user may first enter data
into some fields on the screen and afterwards de-
cide how to continue by choosing a particular
button. According to UML, such a scenario must
be modeled by two nodes: an action succeeded by
a decision node. Users, however, regard the entire
procedure as a cohesive task because it is related
to a single screen and not completed until a button
click has taken place. To improve user compre-
hension, we merge the action and its following
decision node.

In the second part of this step, we eliminate
all other decision nodes by replacing them with
actions. We stereotype these nodes with «UD» or
«SD» for “user decision” and “system decision”,
respectively. The emerging actions are regular
actions except for the existence of more than one
outgoing control flow. The semantics does not
comply with UML because UML actually defines
the semantics of an action with more than one
outgoing control flow as a starting point of con-
current flows [3].

The absence of decision nodes not only im-
proves the comprehension of the user but also
reduces the overall complexity of the diagram.
For the same reason, we suggest to downsize the
notation of merge nodes.

Figure 2 illustrates the user-oriented version

Figure 2: User-oriented activity diagram

of the interaction-oriented activity diagram in
figure 1.

2.2 Software Specification-
Oriented Activities

The software specification-oriented activity
(specification-oriented activity, for short) is a
more detailed activity designed to serve as (part of
the) software specification driving the implemen-
tation process. The transformation of a user-
oriented activity to a specification-oriented activ-
ity consists of two steps.

The first step expands the user-oriented activ-
ity by additional system actions. The expansion
step again is divided into two parts. Firstly, if a
user node is not directly followed by a system
node on some outgoing control flow, an additional
system action is inserted as direct successor. The
new node serves as placeholder for the system
reaction. Secondly, if a user node is not directly
preceded by a system node and its related scene

contains at least one system-provided attribute,
then a system action is inserted as direct predeces-
sor. The additional system action is responsible
for pre-filling the scene.

The determination of a user node where an
additional system action must be inserted as direct
successor or predecessor can be achieved by a
simple syntactical analysis of the activity. Hence,
the first step of the transformation can be per-
formed automatically.

The second step restores the UML-
compliance of the diagram by reversing the sec-
ond step of the mapping presented in section 2.1:
Each node stereotyped as «UD» or «SD» is sim-
ply disassembled into a user action, respectively
system action, and a following decision node.
Obviously, this step can also be performed auto-
matically. Thus, the entire transformation of a
user-oriented activity to a specification-oriented
activity can be carried out in an automated way.

Figure 3 depicts the resulting specification-
oriented version of the user-oriented activity dia-
gram in figure 2.

3 Mapping Specification-
Oriented Activities to
J2EE with Struts

A software specification-oriented activity is inde-
pendent of specific platforms like J2EE, Struts, or
plain Java. We now demonstrate how such an
activity can systematically be mapped to a spe-
cific target platform. As an example platform, we
choose J2EE [4] with Web tier based on the
framework Struts [5]. The mapping comprises of
seven steps.

S1 A class is created that is responsible for
the business logic of the activity.

S2 For each system action with business
logic involved, a method is added to the
class created in S1.

S3 For each user action, a Dispatch-
Action is created.

S4 For each system action that follows a
user action (with or without a control
node in between), a method is added to
the corresponding DispatchAction
created in S3. The method is responsible
for processing the user request. Figure 3: Specification-oriented

activity diagram

S5 For each system action that does not fol-
low a user action (with or without a con-
trol node in between), an Action is
created (cp. first «SA» and «SA» “initial-
ize check shopping cart” in figure 3). The
only method of the Action is responsi-
ble for implementing the system action.

S6 For each scene, a JavaServer Page (JSP)
is created responsible for presenting the
information described by the scene.

S7 For each scene that contains user-
provided attributes, an ActionForm is
created accommodating the user input.

Figure 4 depicts the class diagram yielded by
the mapping of the activity diagram in figure 3.

4 Future Work

Our future work addresses the automated trans-
formation of user-oriented activities to specifica-
tion-oriented activities using ATL [8]. Currently
we are implementing the generation of J2EE-
specific code from a specification-oriented activ-
ity using the tools MagicDraw [9] and eclipse
plug-in openArchitectureWare [10]. Finally we

are investigating how user-oriented activities can
be validated by an automated execution on a dedi-
cated validation platform.

About the Authors

Alexander Lorenz is a scientific staff member and
PhD candidate at the chair for Software Engineer-
ing at the FernUniversitaet in Hagen.

Hans-Werner Six holds the chair for Software
Engineering at the FernUniversitaet in Hagen.

References

[1] Kösters, G., Six, H.-W., Winter, M.: Cou-
pling Use Cases and Class Models as a
Means for Validation and Verification of Re-
quirements Specifications, Requirements En-
gineering, Vol. 6, No. 1

[2] Homrighausen, A., Six, H.-W., and Winter,
M.: Round-Trip Prototyping Based on Inte-
grated Functional and User Interface Re-
quirements Specification, Requirements
Engineering, Vol. 7, No. 1

[3] Object Management Group: Unified Model-
ing Language: Superstructure version 2.0,
http://www.omg.org/technology/documents/
modeling_spec_catalog.htm#UML,
Aug. 2005

[4] Sun microsystems: Java 2 Platform,
Enterprise Edition (J2EE),
http://java.sun.com/javaee/index.jsp

[5] The Apache Software Foundation: Struts 1.2,
http://struts.apache.org/

[6] Cockburn, A.: Structuring Use Cases with
Goals (Part 1), Journal of Object-Oriented
Programming, Sept.-Oct. 1997, pp. 35-40,
http://alistair.cockburn.us/crystal/articles/suc
wg/structuringucswithgoals.htm

[7] Lauesen, S.: Task Descriptions as Functional
Requirements, IEEE Software, March/April
2003, pp. 58-65

[8] Atlas Transformation Language,
http://www.sciences.univ-nantes.fr/lina/atl/

[9] No Magic, Inc.: MagicDraw,
http://www.magicdraw.com/

[10] openArchitectureWare,
http://www.openarchitectureware.org/

Figure 4: Class diagram resulting from the map-

ping of the activity diagram in figure 3

