
ColôR-X : Linguistically-based Event Modeling:A General Approach to Dynamic ModelingJ.F.M. Burg? and R.P. van de RietDepartment of Computer ScienceVrije UniversiteitAmsterdam, The Netherlandsfjfmburg,vdrietg@cs.vu.nlAbstract. This paper introduces a way of modeling the dynamic as-pects of an Information and Communication System in which all theoccurring events are listed and ordered in time. These graphical EventModels are based on formal (logical) speci�cations. Event Models arevery close to the speci�cations in the informal requirements document,which describes the Universe of Discourse. By means of the underlyingformal speci�cations Natural Language sentences are generated auto-matically, in order to give some feedback to the designer and user. Bycombining this feedback feature and the power of the logical foundation,the Event Models can be veri�ed and validated. We will also presentan algorithm and its implementation to generate State Transition Dia-grams from Event Models automatically. This is especially useful in ourenvironment in which programming code-generation is the key objective.1 IntroductionThe name of our current project,COLOR-X, is an acronym for theCOnceptualLinguistically based Object oriented Representation Language for Informationand Communication Systems (ICS abbreviated toX). In the COLOR-X projectwe are using the logical conceptual modeling technique CPL (Conceptual Pro-totyping Language) [8], which is linguistically based, as a formal foundation forgraphical modeling techniques. This approach is chosen to facilitate the processof conceptual modeling and which leads to more consistent and complete modelsthat are linguistically correct. COLOR-X is the �rst phase of a larger projectwhich has as objective the generation of object-oriented programming code froma natural language based modeling technique, which brings, as a side-e�ect, theconceptual models closer to programming code. In addition, by using a modelingtechnique based on linguistic notions, we are narrowing the gap between require-ments documents, written in natural language, and conceptual models as well.The COLOR-X project is divided into several parts, analog to existing concep-tual modeling methods, like OMT [20]). This paper contains the dynamic part,? Supported by the Foundation for Computer Science in the Netherlands (SION)with �nancial support from the Dutch Organization for Scienti�c Research (NWO),project 612-123-309

whereas [4] describes the COLOR-X Static Object Model (CSOM), in which thestatic aspects of the Universe of Discourse (UoD) (i.e. objects, classes and therelations, like generalization and aggregation, between them) are contained. Thegraphical CSOMs are linguistically-based, and logically founded by underlyingCPL-speci�cations. The CSOM-model contains the overall structure of the UoDfor the programming code generator.COLOR-X is part of the LIKE-project (Linguistic Instruments in KnowledgeEngineering) which is a consortium of researchers of three disciplines: Linguistics,Business Administrators and Computer Science. The LIKE-project is focusingresearch around the theme: how linguistic instruments can be used pro�tably inthe area of Knowledge Engineering, e.g. to build Information and Communica-tion Systems (ICSs).One of the main reasons to use linguistic knowledge is to make the use ofwords appearing in the models consistent, and thus making the models as awhole more meaningful. Earlier projects conducted in our group have shown thepro�tability of this approach, [3], [2], [4] and [5]. Another reason to use linguisticknowledge in modeling techniques is to give more expressive power to them. Forexample, it is now possible to express which events should and which could occurin a certain UoD. An additional nice feature of a linguistically based modelingtechnique is that it is relatively easy to generate natural language sentences fromit, in order to give some feedback to the system designers and to the end-usersas well, see also [7]. This feedback consists of generated sentences during themodeling phase, in order to check if the model is consistent with the requirementsand on the other hand this feedback consists of explanation facilities, like [11].The �rst kind of feedback is already incorporated into COLOR-X.Now that we know why to use linguistic knowledge, we need to know howto use it. We will use a lexicon as a source containing this knowledge. Sucha lexicon contains information about taxonomies, verb frames, synonym sets,etcetera. We are using (an extension of) WordNet [17], which is the result ofan ongoing research program at Princeton University in the representation oflexical information.The remainder of this paper is organized as follows: First we will give anoverview of and remarks about the traditional way of dynamic modeling. Af-ter that we will o�er an alternative by introducing COLOR-X Event Models(CEMs). The generality of this approach will be shown in section 5 and section4.1 by generating State Transition Diagrams and formal CPL Speci�cations outof CEMs. We will conclude this paper by giving some conclusions and by listingwork and research that is still to do.2 Dynamic ModelingThe purpose of Dynamic Modeling is to show the time-dependent behaviour ofthe system as a whole or a particular part of the system. In general, there arethree ways of modeling this information:1. Dynamic and Deontic Logic, [8], interested in the states between actions

2. Process Algebra, [22] and [13], concentrating on the actions themselves3. Petri Nets, which are useful in environments where simulation plays an im-portant role [12], but which will not be discussed in this paper.A popular example of a process algebra-based modeling technique is thegraphical State Transition Diagramming (STD) technique, [20]. The use of STDs,however, causes some problems:{ It is not clear whether you should model one STD per object, one STD forthe system as a whole or a mixture of these two approaches. Because of thelack of consensus concerning this point, it is very hard to parse or interpretSTDs in computerized tools.{ The words used as transitions- and state-labels are not constrained by rules.The models would be more comprehensible if the kind of words used foractions, events and states would be pre-de�ned (like controlled verbs, non-controlled verbs and nouns, respectively). Another rule could constrain theform of the words, like in�nitive verbs and singular nouns. Both kind of ruleswould facilitate the interpretation of the models and thus the generation ofprogramming code out of them, but it is very hard to identify them and toestablish some agreement about them.{ By adding di�erent modalities (like necessary and possible) to actions andevents, the resulting STD models would have more expressive power. Intraditional STD techniques, just one modality (factual) is used.{ A state is not only de�ned by the attribute values of some object or (sub-)system, but also by common sense knowledge which is hard to capture inattributes (e.g. "a person is ill").An example of a dynamic and deontic logic-based modeling technique isthe Conceptual Prototyping Language (CPL) [8]. The main problem with thisapproach is the awkward formal syntax, and the di�cult underlying linguis-tic theory. To overcome these problems, we will propose Event Models in thenext chapter. These models have CPL-speci�cations as an underlying formalrepresentation. To understand these models properly we will �rst give a shortintroduction to CPL.2.1 An Introduction to CPLThe Conceptual Prototyping Language (CPL) has been developed as a speci�ca-tion language as close as possible to natural language, by basing it on FunctionalGrammar [9], but formal enough to specify the requirements of an ICS in a pre-cise and unambiguous way. The formal semantics, as de�ned in [8], is based onpredicate, modal, deontic and temporal logic. Each CPL construct is translatedinto some combination of these logics. The general form of a CPL speci�cationlanguage is as follows:Mode : Tense : Predication T1 � � �Tn (id: � � �) (sit: � � �)

Mode = FACTUALjMUSTjNECjPERMITTense = ACTIONjDONEjPROSPjPERFjPRETPredication = a relation between n terms T1 � � �Tn,Ti = a term denotes a (set, with cardinality c, of) object(s).Each object occurs in a speci�c role.id = identi�cation of the objectssit = situation in which this CPL speci�cation is supposed to holdFor example, the following speci�cation says thatWhen a company has sold a car to a customer, it has to send a bill to this cus-tomer within a week.:MUST: ACTION:send(ag=C in company) (pat=bill) (dest=C2 in customer) (temp=T2 in time)(id: T2 = T1 + 1*week)(sit: PERF: sell(ag=C in company) (pat=car) (dest=C2 in customer)(temp=T1 in time))The meaning of the used modalities (MUST means 'should'), tenses (AC-TION means 'present tense' and PERF means 'perfect tense') and semanticfunctions (ag, go, pat, dest are the agent, goal, patient and destination of theevent and temp is the time at which the event takes place) can be found in [8].3 COLOR-X Event ModelingThe COLOR-X Event Model (CEM) is merely a trace of the events that couldand should be performed in the Universe of Discourse (UoD). This way of mod-eling the dynamic aspects of the UoD links up very well with the way theseaspects are described in the requirements document. There is however no auto-matic acquisition of conceptual models out of these natural language sentencesprovided yet, as [1] and [19] propose. The following example will illustrate thiscorrespondence:Requirements Document: A user can borrow a book from a library. Ifa user has borrowed a book he has to return it within three weeks, before he isallowed to borrow a book again.COLOR-X Event Model (CEM): Figure 1 shows the correspondingCEM. It is fairly easy to read and corresponds very closely to the natural lan-guage sentences.Informally, a box represents an event that could, should or has to take place(depending on the modality), a straight arrow represents the actual occurrenceof that event and a 'lightning'-arrow represents the fact that the speci�c eventdid not take place.A strong point of CEMs is the possibility to express the modality of thesentences. The occurrences of the words 'can' and 'is allowed to' in the require-ments document trigger a PERMIT-box. The MUST-box is caused by thewords 'has to'. As will be shown further on in section 3.1 when we will treat the

MUST:

id: T2 < T1 + 3 * week

1. return(ag=user)(go=book)
(dest=library)(tmp=time T2)

PERMIT:

1. borrow(ag=user)(go=book)
(src=library)(tmp=time T1)

1

1Fig. 1. Example of a COLOR-X Event Modelsyntax and semantics of CEMs, a MUST-event requires two outgoing arrows tosucceeding events: the obligatory event has taken place (as it should be) or theobligation is violated. Because of the fact that in our simple example there is noevent speci�ed that has to be done when the book is not returned within threeweeks, the outgoing ('lightning'-) arrow ends in an end-node.3.1 Syntax and Semantics of CEMsThe graphical notations of CEMS can be found in Figure 2. An event box,Figure 2(a), consists of a modality, one ore more event descriptions and zero ormore constraint descriptions. An event description consists of a verb denotingan event, which is either an action (an event controlled by some agent) or a (notcontrolled) process, and one or more terms. The (CPL-) syntax of these termsis: [<cardinality>] role = [variable in] noun 2. The components of a term werealready mentioned in section 2.1. An example clari�es this abstract formulation:one user borrows four books , borrow(<1> ag = user) (<4> go = book)This formal event representation expresses exactly what the modeler wants,which is not always true when using ambiguous natural language sentences.Another advantage of this approach is that it is now possible to use automatictools to support the modeling process. It is always possible to generate naturallanguage sentences automatically out of the CPL constructs.A constraint description constrains the value of one or more terms (throughthe use of variables) absolutely (age > 21) or relatively (age father > age son).The syntax used to express these constraints is the same as the one used in CPL:(id: V1 > 21) and (id: V1 > V2).Besides the event-nodes there are two special nodes that denote start and�nal points (Figure 2(b) and (c), respectively).Because of the fact that there are three modalities to use (permit, necessaryand must), there are three di�erent kinds of event-boxes (Figure 2(d) - (f)). Inthis way a certain degree of completeness is accomplished. When a MUST-boxis used there are always two succeeding events to be speci�ed. After �nishing themodel the remark "the model does not specify what has to be done when eventX has not taken place" will not occur! One has always to specify a relative orabsolute expiration-time, which may be in�nite, when using a MUST-box, inorder to verify whether the obligation has been violated or not. The event-boxes2 everything between square brackets ([..]) is optional

NEC:

(d)

MUST:

id: Expiration_Time

(f)

PERMIT:

(e)

Modality:

...

id: constraint_1

...

id: constraint_m

(a)

1. event(<terms>)

n. event(<terms>)
(b) (c)

Fig. 2. CEM Notation, (a) general event, (b) start node, (c) �nal node, (d) necessary,(e) permitted, (f) obligatoryare connected with arrows which denote the fact that one or more events areperformed (depicted by a straight arrow with one or more event-numbers) or arenot performed at all (depicted by a lightning-arrow).Creating CEMs: Almost every current conceptual modeling method con-tains some step in which the events occurring in the UoD are listed, see forexample OMTs event traces [20]. CEMs do not only contain this kind of infor-mation, but also formalize it. The process of creating CEMs is supported with alexicon. Although the initial step, listing the events and ordering them in timein an informal way, should be done manually by the modeler, the creation ofthe CEM itself is embedded, and thus supported, by a CASE-environment. Theavailability of standard building blocks, the reusable event speci�cations froma lexicon and the complementary information, like antonym-events that will betreated later on, generated out of the lexicon, will help the modeler very muchin creating correct and complete CEMs.4 Correct and Complete CEMsIn this section we will give an overview of the advantages yielded by our ap-proach in which a lexicon plays an important role. After modeling a certainUoD, regardless the method used, there remain always two questions:Correctness, i.e. Is this model right? Is the model constructed according to thesyntax and semantics of the method used? By o�ering standard building blocks,see Figure 2, the resulting model could not be o�ending the graphical syntaxrules. By checking if there exists exactly one start and �nal state, and that everyarrow goes from one block into another, we can verify if the model is syntacticallycorrect. The kind and form of the words used in the model are constrained bythe use of a lexicon. The following information is retrieved from the lexicon inorder to get the kind and the form of the words right, respectively.1. An event is identi�ed by a verb, and one or more nouns, that play certainroles. We retrieve the verb frame corresponding to the verb from the lexiconand check if the entered role-playing nouns �t into this frame. For example:

Verb and Nouns: borrow, user and bookVerb Frame: somebody borrows something 3Match: user is a somebody 3 , book is a something 32. When entering nouns in the plural form, it is very easy to obtain the singularform from the lexicon, in order to further standardize the model.Completeness, i.e. Is this the right model? Does the model contain all the infor-mation from the requirements document? To verify if the model corresponds tothe text from the requirements document it is very helpful to generate a verbal-ized form of the model, see also [3], [18] and [7]. This is made possible in CEMsbecause the underlying CPL speci�cation can be verbalized. Another heuristicto verify if a CEM contains all the information from the requirements documentis to generate the antonym-events, which can be found in the lexicon, of all theevents occurring in the CEM and to check if they appear in this CEM already.In the library-example, section 6, the free-event was generated as antonym of theblock-event and added to the CEM. The antonym-event of borrow (i.e. return),however, is already appearing in the model. The next two sections will show theCPL- and Natural Language generators.4.1 Generating CPL Speci�cationsThe generation of CPL-speci�cations from CEMs is fairly easy, because CPL isused as a foundation for CEM. We will review all the concepts used in CEMsand give their CPL counterparts, as our demo-tool Cem2Cpl generates:1. CEMs start- and end-node and their in- and outgoing arrows have no CPLequivalent2. CEM: general event box with modality Modality, events event1 � � � eventland corresponding terms termi1 � � � termipi ; 1 � i � l, constraints c1 � � �ckand outgoing arrows a1 � � �ah; 1 � h � lCPL: for each arrow aj , 1 � j � h, with label n& � � �&m, 1 � n;m � l:Modality: eventn(termn � � � termnpn)and � � � andModality: eventm(termm � � � termmpm)All the CPL-blocks belonging to a certain arrow are OR-ed together (dis-junctive normal form).All the constraints c1 � � � ck are AND-ed together (disjunctions between con-straints should be expressed as one constraint).(id: c1) and � � � and (id: ck)If a 'lightning'-arrow is appearing in the model, the negation of the event(s)will appear in the CPL-speci�cation.3. CEM: a certain event box EBi with all its predecessors (EB1 � � �EBi�1,without their modalities and tenses). Each EBj ; 1 � j � i contains eventsEj1 � � �Ejl3 Retrieved from WordNet

CPL: Each EBj ; 1 � j � i, is translated into a CPL-disjunction CPLjaccording to step 2. Combining each CPLj will result in:CPLi(sit: DONE: CPLi�1)(sit: PERF: CPLi�2) � � � (sit: PERF: CPL1)For i = 2 the CPL speci�cation looks like: CPL2 (sit: DONE: CPL1)There are four reasons why we would like to generate CPL-speci�cations:1. It is possible to generate Natural Language (NL) sentences out of CPL spec-i�cations. Because CPL exists for several years now, we have got some CPL-parsing and NL-generation tools already (section 4.2).2. Because CPL is logically founded, see [8], it is possible to formally derivenew speci�cations out of existing ones and to check if the speci�cations arecorrect. We will not treat the logical foundation of CPL in this paper.3. CPL supplies formal semantics for the dynamic, as well as the static, aspectsof a UoD and its related database, which restricts the behaviour of thegenerated computer programs exactly to the behaviour modeled.4. By using CPL as the underlying speci�cation language for all kinds ofCOLOR-X models, we have a uniform way of representing di�erent kindsof information. This uniform format facilitates the integration of the dif-ferent views on a UoD and makes updates and queries on the integratedinformation more manageable.4.2 Generating Natural LanguageOur Prolog-translator Cpl2Nl translates any form of CPL-speci�cations intocorrect Natural Language sentences. In this translation process the lexicon playsa very important role, because it contains (information about) verb derivations,plural and singular form of nouns, numerals, adjectives, determiners, etc. Wewill list some aspects of the CPL speci�cations that have their impact on thegenerated sentences. First, the modality determines the auxiliary verb of thesentence as follows: NEC, MUST and PERMIT trigger obliged to, shouldand permitted to respectively. Secondly, the cardinality of the subject (agent orzero) of the relationship determines the singular or plural form of the relatedverb. The identi�cation of the objects is added as a subordinate clause, startingwith where.... Finally, the satellites of the CPL speci�cation are translated intoadjuncts of place or time.There are three basic forms of CPL-speci�cations: 41. Unconditional:PERMIT:ACTION: borrow(ag=user)(<+>go=book)(<1>src=library)[an,user,is,permitted to,borrow,one or more,books,from,a,library]4 The consonant sound of user is not noticed because we do not use a phoneticalanalyzer. Therefore, the article an is generated instead of a.

2. Conditional:MUST:PROSP: return(ag=user)(<+>go=book)(<1>dest=library)(sit: PERF: borrow(ag=user)(<+>go=book)(<1>src=library))[if,an,user,borrowed,one or more,books,from,a,library,then,an,user,will have to,return,one or more,books,to,a,library]3. Identi�ed:PERF: borrow(ag=user)(go=book)(tmp=V1 in time)(id: V1 = yesterday)[an,user,borrowed,a,book,at,a,time,V1,where,V1,is,yesterday]5 Generating STDsThere are mainly two reasons to generate State Transitions Diagrams (STDs)out of COLOR-X Event Models:1. STDs have become a standard (to a certain degree) in modeling the dynamicaspects of an ICS. Although we have had some di�culties and problemsusing STDs, see section 2, we have shown that our CEMs contain also theinformation normally found in STDs by generating STDs out of CEMs. Thereverse process is only possible if the STD is not violating the STD-rulesthat are mentioned below.2. A lot of research in the �eld of programming code generation from STDs isalready done, and most of the existing CASE-tools support such a generationfacility, see for example [21]. We can gain from this knowledge and experienceby generating STDs as intermediate results.The generated STDs satisfy the following rules:{ Every STD belongs to exactly one active object occurring in the UoD. Activeobjects are nouns that play the agent-role in one or more CEM-events.{ A state is represented by a box, identi�ed by a unique number. A verballabel can be added manually, but has no semantic meaning in the model.This decision is made because it is really hard to �nd meaningful labels forevery state, and to maintain a certain degree of conformity among the labels.{ A transition is represented by a uni-directional arrow labeled with a verbalphrase, describing the event that causes the state-transition. Constraints canbe attached to a transition as an optional component of it.{ There exist two special states: the start-state and the �nal-state, that areconnected with the �rst 'real' state (i.e. the state before the �rst event) andthe last state, respectively, by empty transitions. These states correspond tothe creation and destructions, respectively, of the object.The next section will describe the algorithm that generates STDs for eachactive object out of CEMs.

5.1 AlgorithmThe following steps describe roughly the STD-generation process, which has asan input a COLOR-X Event Model, consults a lexicon, and has as an outputSTDs for each active object of the CEM:1. create the start-node (Ns), the �rst node (N1) and an empty transition (T2)between them2. for each event box (EBi) with events Ei1 � � �Eil: create for each outgoingarrow (with label n& � � �&m, 1 � n;m � l) a state transition to a new oran existing node (depending on whether the succeeding event box (EBj) isalready traversed (j < i) or not (j > i)). The label attached to this transitionis a conjunction of the verbalized event descriptions of each Eik , 1 � k � l.The verbal phrase describing event Eik are adjusted as follows: it is strippedfrom its modality and tense, and{ if the object, described by the STD, is the agent of the CEM-event, theCEM-event is copied into the transition-label{ otherwise, the sentence is transformed into a new one in which the objectis the linguistic subject of it. To achieve this the perspective antonymof the verb describing the event is retrieved from the lexicon. This newsentence becomes the transition-label. E.g. the transition label in thelibrary-STD corresponding to the CEM-event "a user borrows a bookfrom a library" will become "a library lends a book to a user".If the CEM-arrow is a 'lightning'-arrow the negation of the verbal phrase isattached to the STD-transition.The (optional) constraint descriptions of event box EBi is attached to theconstraint part of the transition.3. create the �nal node (Nf), and an empty transition (T2) from the last state(Nn) to itImplementation We have implemented the algorithm as described in the pre-vious section. The resulting Prolog-translator Cem2Std reads in a CEM andgenerates for each active object occurring in the CEM a corresponding STD-description. These STD-descriptions are translatable into internal representa-tions of several tools. One of these tools is the CASE-tool Software through Pic-tures (StP), another one is of course the code-generator of our overall project.5.2 Related WorkIn [15] the inference of state machines out of OMT trace diagrams [20] is de-scribed. The main di�erence between their approach and ours is the fact thatwe use a formalized input, whereas their OMT trace diagrams are informal. Theadvantages we gain out of this di�erence are the natural language generationfacility, the possibility to use other kinds of (logical) inferences (also using thestatic information, which has the same logical foundation [4]) and the syntac-tical and semantical veri�cation of the models. Another di�erence is that we

are generating STDs as an intermediate result to generate programming code,and [15] are incorporating their method into an environment which supports theconceptual modeling process using the OMT methodology.6 ExampleTo visualize the techniques, algorithms and tools described in this paper, wewill present an example. This example consists of the simpli�ed library bookcirculation system.Library: Requirements Document: The library gives passes to personsthat want to become users of the library. If a person does not want to be a userany more, he returns his pass. A user can borrow a book for three weeks. At theend of the allowed lending period, the user should return the book. If a user doesnot return a book action is taken, by sending him a reminder. If one week afterthe reminder is sent there is no message from the user, he must pay a �ne of D
70 and is blocked for borrowing any more books until the book is returned andthe �ne is paid.Library: COLOR-X Event Model: Figure 3 shows the COLOR-X EventModel corresponding to the requirements stated in the previous chapter, whichis syntactically correct, i.e. the model is right, and it is semantically correct, i.e.the right model, according to the rules, stated in section 4.Library: CPL and NL: The Cem2Cpl tool has generated all the CPL-speci�cations, which we will not show here. Some corresponding NL-sentences(generated by Cpl2Nl) are listed below:1. [a,library,is,permitted to,give,a,pass,to,an,user]2. [if,a,library,gave,a,pass,to,an,user,then,an,user,is,permitted to,borrow,a,book,from,a,library]4. [if,a,library,blocked,an,user,and,an,user,did not return,a,book,to,a,library,and,a,library,sent,a,reminder,to,an,user,then,an,user,should,return,a,book,to,a,library,at,time,T4,and,an,user,should,pay,a,fine,F,to,a,library,at,time,T4,where,F,is,70,and,where,T4,is,infinite]Library: State Transition Diagram: We haven chosen to let theCem2Std-tool generate a State Transition Diagram for the active object Library. This hasled to sentences at the transition-labels in which the library is the subject, seeFigure 3 (e.g. borrow has become lend).7 Conclusions and Further ResearchThis paper shows an approach to dynamic modeling (COLOR-X Event Mod-eling, CEM), the result of which is very close to the original natural languagesentences that describe the Universe of Discourse. By facilitating the modeling

id: T2 < T + 3 * week

2. borrow(ag=user)(go=book)(src=library)(tmp=time T)

1. return(ag=user) (go=pass)(dest=library)

PERMIT:

PERMIT:

MUST:

NEC:

MUST:

MUST:

id: T3 < T2 + 1 * week

1

id: F = 70

EB

EB

EB

EB

EB

EB

1

2

3

4

5

7

1. pay(ag=user)(go=fine F)(dest=library)(tmp=time T4)

2. return(ag=user)(go=book)(dest=library)(tmp=time T4)

id: T4 = infinite

NEC: EB
8

1 & 2

1. return(ag=user)(go=book)(dest=library)(tmp=time T2)

1. send(ag=library)(go=reminder)(dest=user)

1. return(ag=user)(go=book)(dest=library)(tmp=time T3)

NEC: EB
6

1. block(ag=library)(go=user)

1

1

1

2 1

1

1

1. free(ag=library)(go=user)

1. give(ag=library) (go=pass) (dest=person)

give pass to user

lend book to user

not receive book from user

send reminder to user

not receive book from user

block user

N

N

1

2

3

4

5

6

7

T

T
e

e

f

s

8

receive fine from user &
receive book from user

free user

from user
receive book

from user
receive book

from user
receive pass

Fig. 3. The CEM and library-STD of a Library Book Circulation Systemprocess itself, by means of a lexicon and o�ering standard building blocks, theresulting models will tend to be correct and complete. By generating naturallanguage sentences out of CEMs the correspondence with the requirements doc-ument can be veri�ed. A nice feature of CEMs is the fact that for each objecta State Transition Diagram can be generated, which gives in turn very usefulinformation (object states, state transitions and causes for those transitions)for a programming code generator. A similar project which focuses on JacksonsEntity Structure Diagrams [14] is currently carried out. We are also comparingCEMs with process graphs [10]. All these steps are meant to narrowing the gapbetween problem speci�cation and implementation.The resulting dynamic event model is one way of viewing the Universe ofDiscourse. To get a complete view of the UoD, we have already de�ned theCOLOR-X Static Object Model (CSOM), [4], that describes the static aspectsof the UoD in a linguistically-based graphical way, that links up closely with theobject model of the OMT-method, [20]. We have also de�ned a logical founda-tion of CSOM by giving a translation to CPL-facts. The CSOM-model containsthe overall structure of the UoD for the programming code generator.

After �nishing the COLOR-X project we will gain advantages in the �elds of pro-gramming code generation, reusable models (also by using a lexicon, which canbe regarded as a repository of reusable relationships and objects) and softwareand feedback facilities.With respect to the CEMs the following aspects are still researched:{ The addition of more semantic information to the arrows. For now, we havejust one kind of arrow: the conditional one (if eventi has taken place theneventj could/should/has to take place). Other kinds of (rhetorical) relation-ships could include causal, resulting and concurrent relations [16], [11].{ The relations between the dynamic CEM-models and the static CSOM-models. The events from CEM will have their impact on the relations andobjects of CSOM. The kind of impact will also be described by means ofrhetorical relations.{ We are still analyzing some aspects of State Transition Diagram- Techniques,like triggered operations and nested diagrams, that are not expressable inCEM-models, yet.We are still working on the kind of information a lexicon should containto be useful in the construction process of an Information and CommunicationSystem. We have carried out some previous projects, in which a lexicon wasused in a data-dictionary environment [6], to interpret ER-diagrams [3], anda general feasibility study to use linguistic knowledge during the conceptualmodeling process [2].The tools described in this paper are still preliminary demos, although fullyfunctional. We are (re-) implementing these tools in a more e�cient way into acoherent environment at the moment. This should lead to a CASE-environmentin which a Lexicon Management System plays an important role. The overallidea is to support the modeling process, according to the COLOR-X method,with linguistic knowledge and tools in order to generate correct programmingcode easily.References1. W.J. Black. Acquisition of conceptual data models from natural language descrip-tions. In Proceedings of the 2nd Conference of the European Chapter of the ACL,Copenhagen, 1987.2. P. Buitelaar and R.P. van de Riet. A feasibility study in linguistically motivatedobject-oriented conceptual design of information systems. Technical Report IR-293, Vrije Universiteit, Amsterdam, 1992.3. P. Buitelaar and R.P. van de Riet. The use of a lexicon to interpret er diagrams:a like project. In Proceedings of the ER Conference, Karlsruhe, 1992.4. J.F.M. Burg and R.P. van de Riet. Color-x: Object modeling pro�ts from linguis-tics. Technical Report IR-365, Vrije Universiteit, Amsterdam, 1994.5. J.F.M. Burg and R.P. van de Riet. Color-x: Object modeling pro�ts from linguis-tics. 1995. To appear in the Proceedings of the KB&KS'95, the Second Interna-tional Conference on Building and Sharing of Very Large-Scale Knowledge Bases,Enschede, The Netherlands.

6. J.F.M. Burg, R.P. van de Riet, and S.C. Chang. A data-dictionary as a lexicon: Anapplicication of linguistics in information systems. In B.Bhargava, T.Finin, andY.Yesha, editors, Proceedings of the 2nd International Conference on Informationand Knowledge Management, pages 114{123, 1993.7. H. Dalianis. A method for validating a conceptual model by natural languagediscourse generation. Proceedings of the 4th International Conference on AdvancedInformation Systems Engineering, 1992.8. F.P.M. Dignum. A Language for Modelling Knowledge Bases. Based on Linguis-tics, Founded in Logic. PhD thesis, Vrije Universiteit, Amsterdam, 1989.9. S.C. Dik. The Theory of Functional Grammar. Part I: The Structure of the Clause.Floris Publications, Dordrecht, 1989.10. R.B. Feenstra and R.J. Wieringa. Lcm 3.0: A language for describing conceptualmodels { syntax de�nition. Technical Report IR-344, Vrije Universiteit, Amster-dam, 1993.11. J.A. Gulla. Deep Explanation Generation in Conceptual Modeling Environments.PhD thesis, University of Trondheim, Trondheim, 1993.12. K.M van Hee, L.J. Somers, and M. Voorhoeve. Executable speci�cations fordistributed information systems. In E.D. Falkenberg and P. Lindgreen, edi-tors, Information System Concepts: An In-depth Analysis, pages 139{156. North-Holland/IFIP, Amsterdam, 1989.13. A.H.M. ter Hofstede. Information Modelling in Data Intensive Domains. PhDthesis, Katholieke Universiteit Nijmegen, Nijmegen, 1993.14. M Jackson. System Development. Prentice-Hall, 1983.15. K. Koskimies and E. Makinen. Inferring state machines from trace diagrams.Technical Report A-1993-3, University of Tampere, 1993.16. W.C. Mann and S.A. Thompson. Rhetorical structure theory: Description andconstruction of text structures. In G. Kempen, editor, Natural Language Gen-eration: New Results in Arti�cial Intelligence, Psychology and Linguistics, pages85{95. Martinus Nijho� Publishers, 1987.17. G.A. Miller, R. Beckwith, C. Fellbaum, D. Gross, K. Miller, and R. Tengi. Fivepapers on wordnet. Technical report, Cognitive Science Laboratory, PrincetonUniversity, 1993.18. G.M. Nijssen and T.A. Halpin. Conceptual Schema and Relational Database Design: A Fact Oriented Approach. Prentice Hall, 1989.19. C. Rolland and C. Proix. A natural language approach for requirements engineer-ing. In P. Loucopoulos, editor, Proceedings of the 4th International Conference onAdvanced Information Systems Engineering. Springer-Verlag, Manchester, 1992.20. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented Modeling and Design. Prentice-Hall International, Inc., Englewood Cli�s,New Yersey, 1991.21. A.I. Wasserman and P.A. Pirchner. A graphical extensible integrated environ-ment for software development. In P. Henderson, editor, Proceedings of the ACMSIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software De-velopment Environments, pages 131{142. ACM, ACM Press, March 1986.22. R.J. Wieringa. Algebraic Foundations for Dynamic Conceptual Models. PhD the-sis, Vrije Universiteit, Amsterdam, 1990.This article was processed using the LaTEX macro package with LLNCS style

