YAWN: A Semantically Annotated Wikipedia XML Corpus

Ralf Schenkel Fabian Suchanek Gjergji Kasneci
Max-Planck-Institut fiir Informatik, Saarbriicken, Germany
{schenkel, suchanek, kasneci}@mpi-inf.mpg.de

Abstract: The paper presents YAWN, a system to convert the well-known and widely
used Wikipedia collection into an XML corpus with semantically rich, self-explaining
tags. We introduce algorithms to annotate pages and links with concepts from the
WordNet thesaurus. This annotation process exploits categorical information in Wiki-
pedia, which is a high-quality, manually assigned source of information, extracts addi-
tional information from lists, and utilizes the invocations of templates with named pa-
rameters. We give examples how such annotations can be exploited for high-precision
queries.

1 Introduction
1.1 Motivation

Much of the existing work on structure-aware XML retrieval [AY 702, STWO05, Sch02,
TWO02] has anticipated the existence of a huge number of heterogeneous XML docu-
ments with descriptive (i.e., self-explaining and semantically rich) tags. This has al-
ways been predicted as the natural consequence of the flexibility and variety of XML,
where every author of a Web page can invent a different schema for her data on the
Web. Given a semantically rich structural query like //person [about (//work,
physics) and about (//born, Germany) 1? (i.e., find people who work in phy-
sics and were born in Germany), such search engines would either consider structural
similarity metrics of the query and documents [AY 702, Sch02] or semantic similarity of
the tags used in the query and in the documents, using an ontology as background knowl-
edge [STWO5, The03].

However, this revolution still has to happen. XML, even though widely used nowadays,
usually is either generated from a structured database or used to store textual informa-
tion with some structure. In the latter case, documents are content-rich, but tags are
generic, while in the former case, there may be meaningful tag names, but there is often not
much textual content. Therefore, today’s typical XML search engines either ignore struc-
tural information completely, focussing on keyword queries alone, or deal with semanti-
cally weak structures as in //article [about (., XML)]//section [about (./

1This query is formulated in NEXI [TS04], the query language of the INEX benchmark [INE06], but could
be expressed similarly in XPath with FullText extensions.

/paragraph, retrieval)] (see [FLMKO6] for an overview of many XML search
engines).

This paper aims at bridging the gap between semantics-aware XML search engines and
real world data by adding semantics to XML data, extending the ideas already used in
SphereSearch [GSWO05] and, more recently, the work by Chu-Carroll et al. [CC *06].
Based on the well-known and widely used Wikipedia collection, this paper presents YAWN?,
making the following important contributions: (1) It shows how Wikipedia pages can be
converted to XML, and (2) it presents algorithms to annotate these pages with concepts
from WordNet, resulting in a huge annotated XML corpus with a highly heterogeneous
structure and semantically rich tags. To achieve the latter, we exploit three sources of
semantics: categorical information that has been added to most pages by the author (like
“Albert Einstein is a physicist”), lists of similar pages, which are a common concept in
Wikipedia (like lists of actors, songs, and companies), and invocations of predefined tem-
plates with human-readable parameters that encode factual information.

The rest of the paper is organized as follows. In the remainder of this section we discuss
related work. In Section 2, we shortly review Wikipedia and its markup language and
show how to convert Wikipedia articles to XML. In Section 3 we explain the annotation of
pages based on categories and lists, and Section 4 presents an approach to exploit template
invocations. Finally, Section 5 demonstrates some applications.

1.2 Related Work

There are a number of database-oriented XML benchmarks such as XMark [S T02] and
XMach [BR01] that focus on performance aspects of XML databases. They usually pro-
vide no meaningful content and are therefore not suited for information retrieval. The
INEX community has produced two XML benchmark collections, namely the INEX IEEE
collection and the INEX Wikipedia collection [DGO06], which combine huge corpora with
queries, lists of relevant results, and a methodology to evaluate the quality of search re-
sults. However, these corpora do not include heterogeneous and semantically rich tags.
The INEX Heterogeneous Track has started to collect different XML collections, but there
are no self-explaining tags yet. A first step towards richly annotated data was made in the
INEX Multimedia Track with the Lonely Planet collection with documents from the travel
domain [INEOS5].

There have been several attemps to define a standard XML format for documents stored
in Wikis, the most recent ones being the Wikipedia DTD [Wika] that proposes a set of
tags similar to HTML, and [Doc] that defines XML tags for a subset of the Wiki markup.
However, to the best of our knowledge, none of these covers the complete feature set of
Wiki markup and is publicly available.

The Semantic Web community has recently launched a number of projects to add seman-
tics to Wikis [AumO05a, Aum05h, BG06, Sou05, VKV T06]. These important activities
typically aim at adding semantic information while the pages are designed, requiring that

2yet Another Wikipedia Annotation project

the designer of a page has an understanding of semantics. In contrast, our aproach ex-
ploits information that is already present in Wikipedia pages, without the need for any
user interaction.

Information extraction from text and HTML data is an area with intensive work. Agichtein
[Agi05] gives a survey of information extraction techniques with a focus on scalability in
large collections with millions of documents. Approaches in the literature mostly either
follow a rule-based paradigm [AGMO03, CMMO02, G T04], or employ learning techniques
and/or linguistic methods [AFG03, CS04, Cun02, E 704, NP02]. Our algorithms, unsuper-
vised and statistical in their nature, fit in the second class. The list extraction method used
in Section 3.3 is similar to list extraction methods used in other information extraction sys-
tems like KnowlItAll [ECD*05] and SCRAP [FFT05]. Rule-based information Extraction
from XML documents has been considered by Abolhassani et al. [AFGO03]; in contrast,
we follow a purely automatic approach. Annotated XML collections and their use for
information retrieval were considered by Graupmann et al. [GSWO05] and Chu-Carroll et
al. [CCT06]; the techniques presented in this paper perfectly integrate with these works.

2 Converting Wiki Markup to XML
2.1 Wiki Markup

With more than 1,4 million articles as of October 2006, Wikipedia® is the largest general
purpose encyclopedia that is freely available. The content of pages in Wikipedia, like
in other Wikis, is formulated in Wiki markup, a combination of standard HTML tagging
with specific constructs for structuring, tables, links etc. There is no formal specification
of the language and its semantics yet, hence we had to reverse-engineer them from help
documents in Wikipedia (which do not point out some uncommon features and usages).
Figure 1 shows a simple example for a document in this language. Important building
blocks of the Wiki markup language include

e structuring text by defining several levels of sections with different numbers of
equals signs (=),

o different levels of emphasis for text parts with different numbers of quotes (),

e defining bulleted and numbered lists of different nesting depths with * and # char-
acters,

o defining tables with rows and columns, including headers and captions,

e defining links within the Wikipedia collection by including the name of the target
pagein [[1]

o defining links to the Web, by including the linkin [1, and

Shttp://www.wikipedia.org/

e including images and other media, by defining a Wiki link with an appropriate
namespace like Image:.

==Introduction==
' 'Wiki markup’’ is used in [[Wikipedial].

==Language Components==
* tables

* lists

* and a lot more

ee also==
tp://www.wikipedia.org]

==S
[ht

Figure 1: An example WikiMarkup page

In addition, Wiki markup can be arbitrarily mixed with HTML tags (which is most often
used for layout purposes), and some Wiki markup symbols (like images and tables) may
contain additional layout hints. Mathematic formulae can be added with a LaTeX-like lan-
guage. Wiki markup also provides a template language where invocations of a template
TEMP (in the form {TEMP}) are replaced with the definition of this template, possibly
incuding some simple conditional expressions like if-then-else. Template invocations may
also include values for parameters that then replace the parameter in the template’s defini-
tion. A Wiki2HTML converter (written in PHP) generates HTML pages (that neither have
semantically rich tags nor are guaranteed to be well-formed XML) from the Wiki markup
input, which is then displayed on the Wikipedia Web site.

The different components of Wiki markup can be combined almost arbitrarily. However,
this huge flexibility is at the same time a big problem, as authors often tend to overstrain the
features. As an example, many authors make frequent use of tables for layout, resulting in
a deep nesting of tables and (sub-)sections. Secondly, the fault-tolerant converter does not
encourage correct markup; while this is adequate to create HTML, this makes it difficult
to create well-formed XML.

2.2 Generating XML

This section shows how we generate XML from the Wiki markup of the Wikipedia pages.
We focus on the content of the pages, accepting that some layout information is lost in this
process. The complete textual content of Wikipedia is available as a huge XML file (as
of April 2006, this was about 6GB), which contains one element for each Wikipedia page
with some meta information and its content in Wiki markup. Additionally, a large fraction
of the referenced images are also available for download.

Our Wiki2XML converter runs in two phases, where each phase corresponds to a SAX-
style scan of the input XML document. In the first phase, the existing pages are collected
and redirections (i.e., pages that are simply links to other pages) are resolved. In the

second phase, an XML document is generated for each page that is encountered. The file
name of this document is formed by (1) replacing all white spaces by *+°, (2) replacing
all non-ASCII characters by their UTF-8-encoding, and (3) adding a ’$’ character after
each capital letter in the page name but the first one, which is always a capital. This
document is put into a folder whose name is derived from the page’s name (the first two
characters). As an example, the XML document for the page "Heinrich B&ll” has the file
name Heinrich+B$=C3=B611.xml and is put into the directory He.

As the original Wiki2HTML converter is quite tolerant to syntax errors, there is a substan-
tial number of Wikipedia pages with syntactic problems (the Wiki Syntax Project[Wikb]
lists 8,400 for the April 21, 2005 dump, including 50 defective section headings, 80 HTML
tags, 250 tables, 600 double quotes, 950 triple quotes, and 3400 square brackets). Each
generated XML document consists of three parts: (1) the preamble that sets the character
encoding and includes a pointer to an XSLT for presenting the page, (2) the article
element with its header child, which in turn has children that specify meta data like the
page title and id, the last revision, and the categories of this page, and (3) the body child
of the article element that contains the XML representation of the page’s content.

The conversion of the Wiki markup to XML is conceptually done as follows:

e Sections, subsections etc. are converted to section, subsection etc. elements,
each with an st child that contains the section title.

e Both numbered and bulleted lists are converted to 1ist elements with entry
children corresponding to the different list entries. Nested lists are represented by
subentry, subsubentry etc. tags.

e Tables are represented by a table tag. Inside this tag, there is one row element for
each row of the table, which in turn has one col tag for each column. For header
rows, the tag header is used.

e Links to other pages in Wikipedia are converted to 1 ink elements that correspond
to an XLink to the target page’s XML version; optionally, links to nonexisting
Wikipedia pages can be marked. Links to web pages are converted to weblink
tags with an XLink to the link target.

e Links to images are converted to image elements that correspond to an XLink to
the image file that is located in a directory derived from the image name’s MD5 hash
(like in the original Wikipedia image collection).

e Markup for emphasis is converted to b and it elements.

Figure 2 shows the XML generated for the example Wiki markup from Figure 1.

The exact conversion of Wiki markup to well-formed XML is more complex (and in fact
sometimes impossible without human interaction) if the markup is mixed with arbitrary
HTML tags (this is also pointed out in [Doc]). This is especially a problem with some
tables that are defined in a mixture of HTML and Wiki markup, but also simple tags like

 render a generated document malformed. To solve this problem, we eliminate all

<?xml version="1.0" encoding="UTF-8" ?>
<?xml-stylesheet type="application/xml" href="../../wikipedia.xslt"?>
<article xmlns:xlink="http://www.w3.0rg/1999/x1link/">
<headers>
<title>Wiki markup</title>
<id>42</id>
<revisions
<timestamp>2006-10-05 14:22</timestamp>
</revisions
<categoriess>
<categorys>Markup languages</categorys>
</categories>
</header>
<body>
<section>
<st>Introduction</st>
<p>Wiki markup is used in
<link xlink:href="../Wi/Wikipedia.xml" xlink:type="simple">
Wikipedia
</link>.</p>
</section>
<section>
<st>Language Components</st>
<list>
<entry>tables</entry>
<entrys>lists</entry>
<entrys>and a lot more</entrys>
</list>
</sections>
<sections>
<st>See also</st>
<weblink xlink:href="http://www.wikipedia.org" xlink:type="simple">
http://www.wikipedia.org
</weblink>
</section>
</body>
</article>

Figure 2: Generated XML for the WikiMarkup from Figure 1

HTML tags from the Wiki markup in a preprocessing step. As those tags are typically
used only for layout purposes, we do not lose any semantics, but can generate much better
XML.

Each document is tested for well-formedness after it was generated, making sure that
the collection contains only syntactically correct documents. In our experiments, less
than 0.5% of the generated documents were malformed and therefore dropped from the
collection.

The XML dialect we use is similar to the one used by the INEX Wikipedia collection.
However, we have better support for some details, including nesting of sections (in INEX,
all nesting levels of sections are mapped to sec elements). Additionally, as the INEX
Wikipedia collection has kept the HTML tags, it contains a noticable amount of malformed

or otherwise abnormal XML pages. However, as both collections use the same identifier
for pages that is derived from Wikipedia, both collections are to some extent compatible
on the document level, which allows to reuse some of the queries and assessments.

3 Semantic Annotation of Wikipedia Pages

We aim at finding high-quality semantic annotations for Wikipedia pages by a combination
of exploiting manually created, high-quality information from categories that are assigned
to most pages, and deriving additional information from highly structured documents such
as lists (of persons, locations, etc.). To make the results applicable for a large suite of
applications, we find annotations within the scope of a predefined ontology; we use Word-
Net [Fel98], the currently most extensive and widely used general-purpose thesaurus for
the English language, but the results are transferable to any hierarchical ontology. The
ontology provides us with a standard vocabulary for the annotations than can also be ex-
ploited for querying the annotated documents. Additionally, as our annotation algorithms
are heuristic, we explicitly maintain an estimated confidence in the annotations wherever
applicable.

3.1 Overview of WordNet

WordNet [Fel98] is a fairly comprehensive common-sense thesaurus carefully handcrafted
by cognitive scientists. WordNet distinguishes between words as literally appearing in
texts and the actual word senses, the concepts behind words. As of the current version
2.1, WordNet contains 81,426 synsets for 117,097 unique nouns. (WordNet also includes
other types of words like verbs and adjectives, but we consider only nouns in this paper.)
Often a single word has multiple senses, each of which comes with an estimation of its
commonality and a brief description in a sentence or two and also characterized by a set
of synonyms, words with the same sense, called synsets in WordNet. In this paper, we use
the term concept for word senses, hence each concept corresponds to exactly one synset.
WordNet provides relationships between concepts like hypernyms (i.e., broader senses),
hyponyms (i.e., more narrow senses), and holonym (i.e., part of) relationships; for this
paper, we focus on hypernym relationships.

Conceptually, the hypernym relationship in WordNet spans a directed acyclic graph with
a single virtual source node "ROOT” (that we introduced to get a connected graph) and
seven first-level basic synsets (entity, state, abstraction, event, act, group,
possession) that are children of the source node. Figure 3 shows an excerpt of that
graph. For each concept in WordNet, there exists at least one, but usually several distinct
root-to-concept paths (like for the concept ‘singer’ in the excerpt).

OO OO
(o> Qe @isd

iy

entertainer,

performer

Figure 3: Excerpt of the WordNet DAG

3.2 Exploiting Categories

The majority of Wikipedia pages is assigned to one or multiple categories. The page about
Albert Einstein, for example, is in the categories German 1anguage philosophers,
Swiss physicists, and 34 more. Not all categories, however, imply that the entity
described on the Wikipedia page is an instance of some concept. Some categories serve ad-
ministrative purposes (like Articles with unsourced_statements), othersyield
non-conceptual information (like 1879 births) and again others indicate merely the-
matic vicinity (like Physics). The administrative and non-conceptual categories are
very few (less than a dozen) and can be excluded by hand. To distinguish the conceptual
categories from the thematic ones, we employ a shallow linguistic parsing of the category
name. For example, aname like Naturalized citizens of the United States
is broken into a pre-modifier (Naturalized), a head (citizens) and a post-modifier
(of_the_United_States). Heuristically, we found that if the head of the category
name is a plural word, the category is most likely a conceptual category. We used the
Pling-Stemmer [SIWO06] to reliably identify and stem plural words. This gives us a (pos-
sibly empty) set of conceptual category for each Wikipedia page.

As we want to use WordNet as foundation for our annotations, every conceptual Wikipedia
category has to be linked to a corresponding WordNet concept. We experimented with dif-
ferent heuristics, including context-aware [STWO03] and compactness-based [MTV *05]
methods, and discovered that the simplest heuristics yields the correct link in the over-
whelming majority of cases: We determine the WordNet concepts that the head of the
category name refers to and link the category to the most common concept among them.

3.3 Exploiting Lists

Wikipedia contains many lists, which are an extensive, manually created and therefore
high-quality source of information. In the Wikipedia Snapshot from April 2006 that we
used for our experiments, there are 18,436 different lists.

We do not consider the original Wiki markup lists, but their XML versions, i.e., the output
of the XML generation process described in Section 2; this allows a better handling of
structure in the lists. As an example, Figure 4 shows an excerpt of the list of Germans
from Wikipedia. To uniquely identify the elements of such a list, we assign a unique
XPath expression to each element that consists only of name tests, child axes and posi-
tion predicates. In the example, the 1ink element that is a child of the second entry
element in Figure 4; it is identified by the XPath expression /article [1] /body [1]
/section[1]/1ist[1]/entry[2]/1ink[1]. Note that Wikipedia lists are not
always designed as nested Wiki markup lists; there are many lists that are in fact tables.
Our algorithm is not limited to Wiki markup lists and supports any type of regular struc-
ture.

It is evident that the example list is well structured, and it would be easy for a human to
find out that all links point to pages about actors or, more generally, persons. A manual
appraoch to exploit lists would therefore require that a user identifies patterns in a list
(either explicitly by an XPath expression or by highlighting them in an interface) and
assigns them to a WordNet concept like *actor’. However, while such a manual approach
could be useful for selected small but important subsets of all lists (like annotating all
persons, which can be found in a list of 692 similarly structured lists), this tedious task
does not scale to the whole Wikipedia collection.

3.3.1 Automatic Grouping of XPath Expressions

We propose an automated algorithm that exploits the fact that many pages have already
been annotated with concepts derived from their categories, and only some pages are left
to annotate. The algorithm, a variant of previously proposed algorithms for list extraction
like [FFTO5], proceeds in three steps: (1) it identifies parts of the list that are structurally
similar (so-called group candidates), (2) it selects those group candidates where a large
fraction of links points to pages with coherent annotations (so-called groups), and (3) it
finds annotions that are common among them, and heuristically assigns these annotations
to all pages in the group. In the example, if all but the third link point to pages that are

<articles>
<body>
<section>
<st>Actors</st>
<lists>
<entry>
<link xlink:href="../Ma/Mario+A$dorf.xml">
Mario Adorf</links>, (born 1930), actor
</entry>
<entry>
<link xlink:href="../Ha/Hans+AS$lbers.xml">
Hans Albers</links>, (1891-1960), actor
</entry>
<entry>
<link xlink:href="../Mo/Moritz+B$leibtreu.xml">
Moritz Bleibtreu</links>, (born 1971), actor
</entry>

Figure 4: Excerpt from the XML.ified Wikipedia list of Germans

labeled as "actor’, the algorithm would assign that concept to the page of ’Moritz Bleibtreu’
as well.

In a preprocessing step, we first temporarily extend the annotations of all pages that are
linked in the list. For each concept annotated to a page, we add all concepts on the root-to-
concept paths of this concept in WordNet to the annotations of a page. This allows us to
identify different annotations that are similar at a higher level of abstraction in WordNet,
like "actor’ and ’singer’, which are both subconcepts of *performer’.

Group candidates are identified by grouping elements with similar XPaths together. We
say that two elements have a similar XPath if both paths have the tag sequence and differ
only in a single position. We label each group candidate with an XPath pattern that has
the same tag sequence and the same positions as the elements in the group candidate, but a
wildcard "*” at the position where the elements differ. As we maintain annotations only for
pages (which are identified by 1ink elements in the lists), it is sufficient to consider only
group candidates where the last tag is 1ink. We identify each XPath in a group candidate
with the page its link element points to. In the example, the group candidate includ-
ing the three 1ink elements has the label /article[1] /body[1] /section[1]
/1list[1]/entry[*]/1link[1]. We eliminate group candidates that are too small,
i.e., consist of less than 5 elements.

To determine if a group candidate with n elements is a proper group, we count, for each
concept ¢, the number f. of times ¢ where occurs as an annotation in the group. We accept
the group if there is at least one concept where ’% > 4, i.e., where the concept occurs
in the annotations of at least a (configurable) fraction of all pages. Note that » includes
pages without any annotations. Setting ¢ close to 1.0 gives a higher annotation quality, but
can potentially reduce recall, whereas setting § close to 0 incurs a high danger of wrong
annotations. In our experiments, 6 = 0.75 yielded good results. Each such concept ¢ is

then assigned to all pages in the group that are not already annotated with c; the confidence
of the annotation is set to f;

As a result of this process, we have for each page a set of candidate annotations. However,
there are some redundant annotations in this set, i.e., concepts that are more general than
another concept in the set (like ’actor’ and ’person’). To minimize the set of annotations,
we consider the subgraph of WordNet formed by the concepts assigned to this page. We
keep only concepts that are sinks of the graph, removing more general concepts that are
implied by them.

3.3.2 Outlier Detection

Even though most lists have a regular structure, sometimes outliers occur, i.e., small
glitches in an otherwise perfectly regular structure. As an example, consider the excerpt
of a list of songs shown in Figure 5. While, for most entries, the first link points to the
singer’s page and the second to the song’s, this regularity is broken for one song that has
two singers (shown in boldface). If we apply our algorithm in this setting, ’David Bowie’
would be accidentally annotated as ’song’. Similar outliers can be caused by omitting links
to pages that do not yet exist in Wikipedia (like some unknown singer) or by mistakes of
the page editor.

<list>
<entry>
<link xlink:href="../Jo/John+L$ennon.xml" xlink:type="simple">
John Lennon</link> :
<link xlink:href="../Im/Imagine+ (song) .xml" xlink:type="simple">
Imagine</link>
</entrys>
<entry>
<link xlink:href="../Ne/Nena.xml" xlink:type="simple">
Nena</link> :
<link xlink:href="../99/99+LSuftballons.xml" xlink:type="simple">
99 Red Balloons</links>
</entry>
<entry>
<link xlink:href="../Qu/Queen+ (band) .xml" xlink:type="simple">
Queen</link> &
<link xlink:href="../Da/David+BS$owie.xml" xlink:type="simple">
David Bowie</link> :
<link xlink:href="../Un/Under+P$ressure.xml” xlink:type="simple">
Under Pressure</link>
</entry>
</list>

Figure 5: Example for an outlier in a list of songs

We apply a simple heuristics to detect such outliers that works as follows. First, we manu-
ally define the compatibility of a carefully selected set of base concepts towards the top of
the WordNet DAG; these concepts are shown in grey in Figure 3. Compatible sets of base

concepts are {living thing,causal agent,group} and {whole,thing}, all other combinations
of base concepts are incompatible. Whenever a page p should be annotated with a new
concept ¢, all base concepts B(c) on paths from ¢ toward the root node are computed and
compared with the base concepts that have been assigned to p earlier in the process. The
new concept is assigned to p if and only if each base concept in B(c) is compatible with
each already assigned base concept of p. This heuristic cleaning eliminates most erroneous
annotations.

3.4 Adding Semantic Tagsto Pages

Annotations characterize a Wikipedia page and therefore should be stored with the page,
enabling queries of the form “find pages of singers that...”. We therefore add tags that
correspond to the annotations for a page right after the article element (see Figure 6.
The tag names are derived from the WordNet synset that correspond to the annotated
concept. The tags are augmented (in form of attributes) with the confidence, the ID of the
WordNet concept, and the source of the annotation. In a NEXI-style query language, the
example query fragment would be posed as //singer [about (., ...)], exploiting
the new annotation.

<articles
<guitarist confidence="1.0" wordnetid="09498828" source="categories">
<singer confidence="0.75" wordnetid="9908715" source="1 lists">
<header>
<title>Brian May</title>
<id>42069</1id>

Figure 6: Excerpt from the semantically annotated 'Brian May’ page

At the same time, the annotations of a page are also an important source of information in
other pages that link to the page; this can be exploited for queries like “find concerts where
the band Queen played”. To support this, we add the same tags also to links to the page in
other pages (see Figure 7). Once we have such an annotation of links, the example query
fragment could be formulated as //concert [about (//band, ' ‘Queen’ ")], ex-
ploiting the fact that any link to the Queen page will be annotated as band (as opposed to
links to the Queen Mary ship or Queen Elizabeth I1. of England).

<guitarist confidence="1.0" wordnetid="09498828" source="categories"s>
<singer confidence="0.75" wordnetid="9908715" source="1 lists">
<link xlink:href="../Br/Brian+MS$Say.xml" xlink:type="simple">
Brian May</link>
</singer>
</guitarists>

Figure 7: Semantically annotated version of a link to the ’Brian May’ page

Note that the generated XML gets more complex with these additional tags. However,
these documents will never be seen by any human user, as systems will typically convert
results to a more readable format anyway (and can decide if they show the annotations to
a user).

4 Exploiting Implicit Semantics of Template I nvocations

A rich source of semantics that is already included in Wikipedia are template invocations.
However, unlike in the approaches presented in the previous sections, we exploit template
invocations not for annotating a Wikipedia page as a whole, but for annotating pieces
of information on that page. Templates are often used to generate a standard layout for
structured information that is common to many pages. As an example, Figure 8 shows
the invocation of the Infobox band template that generates a table with some standard
information on a musical band; this information is provided as parameters to the template.
Similar templates exist for persons, countries, companies, rivers, software, and many more.

{{Infobox band

band name Queen |

image [[Image:Queen.png|250px|right]]
years active = 1971 - Present |

status Active |

country [[United Kingdom]]

H

Figure 8: Example call of the Infobox_band template

For most templates, the name of a parameter is a clear indication of its semantics. We
therefore exploit template invocations in a Wikipedia page to enrich the generated XML
document with semantic annotations based on the template parameters. To do so, we
try to map each parameter name to a WordNet concept, using the heuristics explained
in Section 3.2. We then generate an element with the same name as the template. For
each parameter, this element has a child element with the parameter name as name and
the current parameter value as value. Figure 9 shows the XML that is generated for the
example template invocation from Figure 8; note that not all parameter names could be
mapped to WordNet concepts.

In contrast to the INEX Wikipedia collection that simply represents the template invoca-
tions with their parameters with a generic tag <template>, we believe that our approach
is much more in the spirit of XML, allowing more natural XPath- and NEXI-style queries
suchas //article[about (., 'band’) and contains(//country, 'USA’)
and contains(//status,’active’). Note that such queries can also be posed
and answered if a user does not exactly know the schema, by relaxing tag names and other
structural query conditions [AY 702, STW05, Sch02, TWO02], or possibly by support of a
DTD-aware graphical interface [vZBvOWO0§6].

<Infobox band>
<band_name>Queen</bandname>
<image confidence="1.0" wordnetid="3782824" source="template">
<imagelink xlink:type="simple"

xlink:href="../../images/3/32/Queen.png"/>

</image>

<years.active>1971 - Present</years.actives

<status confidence="1.0" wordnetid="13131686" source="template">
Active

</status>

<country confidence="1.0" wordnetid="8023668" source="template">
<link xlink:href="../Un/United+K$ingdom.xml" xlink:type="simple">

United Kingdom

</link>

</country>

</Infobox_bands>

Figure 9: XML representation of the template call from Figure 8

5 Applications
5.1 Concept-Based I nformation retrieval

An important application of annotations is concept-based information retrieval. Graup-
mann et al. [GSWO05] have shown that annotating important classes of information like
persons, locations, and dates can help to improve result quality, especially precision of
results. As YAWN is not limited to a few classes, but annotates with a huge set of di-
verse concepts from WordNet, it seems likely that these annotations can lead to further
enhancements for the retrieval.

We have not yet done a throrough evaluation of the quality of annotations in general and
their impact on result quality. However, to give a first impression of the use and effective-
ness of annotations, we made some preliminary experiments with our XML search engine
TopX [TSWO05] on a small, annotated Wikipedia fragment, with NEXI-style [TS04] struc-
tured queries. We converted the first 10,000 Wikipedia documents (excluding redirections
that contain only a pointer to another document) from the April 2, 2006 dump file into our
XML format with semantic annotations, using the techniques presented in the sections be-
fore. The conversion failed for 49 documents, usually due to syntax problems in the input
Wiki markup or unusual combinations of tables and sections (like starting a new section
within a header of a table, or starting a new table within the title of a section). In our
preliminary implementation, this took less than one hour on a standard notebook.

We consider three types of queries: (1) queries that exploit only the annotation of complete
pages, optionally with content constraints, (2) queries that exploit the annotation of pages
and links, optionally with content constraints, and (3) queries that additionally exploit an-
notations derived from template invocations. We collected five to ten queries of each type
and compared the performance of TopX with annotation-aware queries to queries without
annotation-awareness, i.e., content-only queries. Table 1 summarizes the results for the

average precision@10 of the three query classes with and without annotation awareness.
Note that we did not measure recall; we expect that some results will not be found due to
errors in the annotation process. We now discuss some anecdotical results for the three

query types.

| Query type | Precision@10[keywords] | Precision@10[annotations] |
1 (pages) 0.85 0.24
2 (pages+links) 0.96 0.14
3 (pages+links+templates) | 1.0 0.0

Table 1: Experimental results with TopX

The simplest (albeit useful) example for the first query type are list-style queries like
’find scientists that won the Nobel prize’ that would be formulated as keyword query
scientist nobel prize without annotation awareness. If we exploit annotations,
we can reformulate the query as //scientist [about (.,Nobel prize)], yield-
ing a lot less nonrelevant results. For the example collection, TopX achieves a preci-
sion@10 of 0.2 for the keyword query, compared to 0.8 for the annotation-aware query.
Here, the additional annotation serves as a prefilter for pages that simply mention the No-
bel prize, but are not a about scientists (like the page about Jimmy Carter who won the
peace Nobel prize).

A typical example that shows the usefulness of the second query type that exploits page
and link annotations is the query that asks for musicians who have performed a song where
’space’ occurs in the title, which could be formulated as //musician [about (//
song, space)]. Without the annotation of the link, a search engine would find any
occurrence of the term within the page, not only in the context of a song. As a result,
the precision of the annotation query is perfect (1.0), whereas the corresponding keyword
query finds no relevant results within the top 10.

The last query type is most powerful as it can exploit all three types of annotations. As an
example, consider the query *find mayors of towns in the (German state) Hesse’. While a
keyword-based query has no chance to retrieve relevant results, the annotation-aware query
//town [about (//state,Hesse)] //mayor that exploits tags introduced by the
template Infobox_Town_DE yields only relevant results in the test collection. However,
as not all city pages may use such a template, the recall is probably not perfect. To increase
recall (at the cost of precision), using ontological tag expansion and structural similarity
measures in the engine could help; this is subject of future work.

5.2 Other Applications

There are many more applications for an annotated XML corpus beyond the obvious in-
formation retrieval case sketched in the previous subsection, for example to help with
clustering and classification of Wikipedia pages.

The annotations can further be exploited for query formulation, by letting a user pick

concepts from WordNet and combine them to form a structured query, similar to the DTD-
aware query formulation presented in [vZBvOWO6]. The diverse structure introduced by
the annotations will most certainly be a rich source for structural feedback [ST06] that
exploits the structure of relevance results to generate more precise queries. And, finally,
being the first real-life heterogeneous XML collection with both rich tags and content,
we think that our new collection can serve as a large-scale benchmark for systems that
exploit semantic annotation for retrieval, classification, clustering, etc, extending existing
benchmarks with structural diversity.

6 Conclusionsand Outlook

This paper presented YAWN, a project to create an XML version of Wikipedia with seman-
tic information. We showed how to extract semantics from categories, lists, and template
invocations, yielding a huge XML corpus annotated with semantically rich tags.

For future work, we plan to extensively evaluate the quality of the annotations and their ef-
fect for information retrieval, possibly within the INEX benchmark, and to consider some
of the applications sketched in the previous section. Besides that, we will examine how
we can integrate the collected information into our ontology and exploit it for other data
sources, too. Finally, we plan to offer the annotated XML collection for public download.

References

[AFGO03] Mohammad Abolhassani, Norbert Fuhr, and Norbert Gévert. Information Extraction
and Automatic Markup for XML Documents. In Blanken et al. [BGS™03], pages
159-174.

[AgiO5] Eugene Agichtein. Scaling Information Extraction to Large Document Collections.
|EEE Data Eng. Bull., 28(4):3-10, 2005.

[AGMO03] A. Arasu and Hector Garcia-Molina. Extracting Structured Data from Web Pages. In
SIGMOD 2003, pages 337-348, 2003.

[Aum05a] D. Aumdller. Semantic Authoring and Retrieval in a Wiki. In European Semantic
Web Conference ESWC2005, 2005.

[AumO05b] D. Aumiller. SHAWN: Structure Helps a Wiki Navigate. In BTW-Workshop
“WebDB Meets IR”, 2005.

[AYT02] Sihem Amer-Yahia et al. Tree Pattern Relaxation. In EDBT 2002, pages 496-513,
2002.

[BGO6] M. Buffa and F. Gandon. SweetWiki: Semantic Web Enabled Technologies in Wiki.
In ACM 2006 International Symposium on Wikis, pages 69-78, 2006.

[BGS103] Henk M. Blanken, Torsten Grabs, Hans-Jorg Schek, Ralf Schenkel, and Gerhard
Weikum, editors. Intelligent Search on XML Data, Applications, Languages, Mod-
els, Implementations, and Benchmarks, volume 2818 of Lecture Notes in Computer
Science. Springer, 2003.

[BRO1]
[CC06]
[CMMO02]

[CS04]

[Cun02]
[DGOS]
[Doc]
[E*04]

[ECD'05]

[Felog]
[FFT05]

[FLMKO6]

[GT04]

[GSWO5]

[INEO5]
[INEOS6]

[MTVT05]

[NP02]

T. Bohme and E. Rahm. XMach-1: A Benchmark for XML Data Management. In
BTW 2001, pages 264-273, 2001.

Jennifer Chu-Carroll et al. Semantic search via XML fragments: a high-precision
approach to IR. In SGIR 2006, pages 445-452, 2006.

V. Crescenzi, G. Mecca, and P. Merialdo. RoadRunner: Automatic Data Extraction
from Data-Intensive Web Sites. In SGMOD 2002, page 624, 2002.

William W. Cohen and Sunita Sarawagi. Exploiting dictionaries in named entity ex-
traction: combining semi-Markov extraction processes and data integration methods.
In KDD 2004, pages 89-98, 2004.

H. Cunningham. GATE, a General Architecture for Text Engineering. Comput.
Humanit., 36:223-254, 2002.

Ludovic Denoyer and Patrick Gallinari. The Wikipedia XML Corpus. to appear in
S GIR Forum, 2006.

DocBook XML Export. http://meta.wikimedia.org/wiki/DocBook
XML _export (last change JUN-19-06).

Oren Etzioni et al. Web-scale information extraction in KnowlItAll (preliminary re-
sults). In WAMWV 2004, pages 100-110, 2004.

Oren Etzioni, Michael J. Cafarella, Doug Downey, Ana-Maria Popescu, Tal Shaked,
Stephen Soderland, Daniel S. Weld, and Alexander Yates. Unsupervised named-
entity extraction from the Web: An experimental study. Artif. Intell., 165(1):91-134,
2005.

C. Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, 1998.

Bettina Fazzinga, Sergio Flesca, and Andrea Tagarelli. Learning Robust Web Wrap-
pers. In DEXA 2005, pages 736745, 2005.

Norbert Fuhr, Mounia Lalmas, Saadia Malik, and Gabriella Kazai, editors. 4th In-
ternational Workshop of the Initiative for the Evaluation of XML Retrieval (INEX
2005), volume 3977 of Lecture Notes in Computer Science. Springer, 2006.

Georg Gottlob et al. The Lixto Data Extraction Project — Back and Forth between
Theory and Practice. In PODS 2004, pages 1-12, 2004.

Jens Graupmann, Ralf Schenkel, and Gerhard Weikum. The SphereSearch Engine
for Unified Ranked Retrieval of Heterogeneous XML and Web Documents. In VLDB
2005, pages 529-540, 2005.

INEX Multimedia Track, 2005. http://inex.is.informatik.
uni-duisburg.de/2005/tracks/media/index.html.

Initiative for the Evaluation of XML Retrieval (INEX), 2006. http://inex.1is.
informatik.uni-duisburg.de/2006/.

Dimitrios Mavroeidis, George Tsatsaronis, Michalis Vazirgiannis, Martin Theobald,
and Gerhard Weikum. Word Sense Disambiguation for Exploiting Hierarchical The-
sauri in Text Classification. In PKDD 2005, pages 181-192, 2005.

G. Neumann and J. Piskorski. A Shallow Text Processing Core Engine. Journal of
Computational Intelligence, 18(3):456-576, 2002.

[St02]
[Sch02]
[SIW06]
[Sou05]
[STO6]
[STWO3]

[STWO5]

[The03]
[TS04]
[TSWO5]
[TW02]
[VKV+06]

[VZBVOWO06]

[Wika]

[Wikb]

A. Schmidt et al. XMark: A Benchmark for XML Data Management. In VLDB
2002, pages 974-985, 2002.

Torsten Schlieder. Schema-Driven Evaluation of Approximate Tree-Pattern Queries.
In EDBT 2002, pages 514-532, 2002.

Fabian M. Suchanek, Georgiana Ifrim, and Gerhard Weikum. LEILA: Learning to
Extract Information by Linguistic Analysis. In 2nd Workshop on Ontology Popula-
tion (OLP2) at ACL/COLING, 2006.

A. Souzis. Building a Semantic Wiki. IEEE Intelligent Systems, 20:87-91, 2005.

Ralf Schenkel and Martin Theobald. Structural Feedback for Keyword-Based XML
Retrieval. In ECIR 2006, pages 326—337, 2006.

Ralf Schenkel, Anja Theobald, and Gerhard Weikum. Ontology-Enabled XML
Search. In Blanken et al. [BGS™03], pages 119-131.

Ralf Schenkel, Anja Theobald, and Gerhard Weikum. Semantic Similarity Search on
Semistructured Data with the XXL Search Engine. Information Retrieval, 8(4):521-
545, December 2005.

Anja Theobald. An Ontology for Domain-Oriented Semantic Similarity Search on
XML Data. In BTW 2003, 2003.

Andrew Trotman and Borkur Sigurbjornsson. Narrowed Extended XPath I (NEXI).
In INEX Workshop 2004, pages 16-40, 2004.

Martin Theobald, Ralf Schenkel, and Gerhard Weikum. An Efficient and Versatile
Query Engine for TopX Search. In VLDB 2005, pages 625-636, 2005.

Anja Theobald and Gerhard Weikum. The Index-Based XXL Search Engine for
Querying XML Data with Relevance Ranking. In EDBT 2002, pages 477-495, 2002.

Max Volkel, Markus Krdtzsch, Denny Vrandecic, Heiko Haller, and Rudi Studer.
Semantic Wikipedia. In WMAW, pages 585-594, 2006.

Roelof van Zwol, Jeroen Baas, Herre van Oostendorp, and Frans Wiering. Bricks:
The Building Blocks to Tackle Query Formulation in Structured Document Retrieval.
In ECIR 2006, pages 314-325, 2006.

Wikipedia DTD (draft). http://meta.wikimedia.org/wiki/
Wikipedia_ DTD (last change APR-09-06).

Wiki Syntax Project. http://en.wikipedia.org/wiki/Wikipedia:
WikiProject Wiki Syntax.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

