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Abstract

There exists a number of similarity-based recommendation communi-

ties, within which similar agents’ ratings on items are collected by agents

to make predictions on new items’ ratings. Despite its success, similarity-

based recommendation communities suffer from some significant limita-

tions, such as scalability and susceptibility to the noise. In this paper,

we propose a trust-based recommendation community to overcome these

limitations. In the trust-based recommendation community incorporates,

trustworthy users’ ratings are taken into account when making predic-

tions on new items’ ratings. A trust metric is designed to quantify the

degrees of trust an agent should place on others. Experimental results

based on a real dataset show that trust does improve the recommenda-

tion community’s performance in terms of prediction accuracy, coverage,

and robustness in the presence of noisy ratings.



1 Introduction

1.1 Motivations

With the development of Web technology and Agent technology, people start

to shift many activities from the real world into the cyber world. A typical

example is the emergence of online communities in recent years, e.g. communi-

ties for trading goods online like eBay.com, communities for products or items

recommendation like Movielens1.

The focus of this paper is the recommendation communities. Users have

their agents join the community to collect recommendations on products or

items from others2. The collected recommendations are then used by their

agents to predict the degrees of satisfaction on new products, based on which

users make the decisions whether to buy or browse the new products.

Traditionally, similarity-based approach is applied to make predictions: the

similarities between pairs of agents are derived according to the “agreements”

between individual items over all the items co-rated by agents, and the predic-

tions are made as weighted average of the collected recommendations with the

similarities between agents as weights [18].

There exist a number of similarity-based communities, e.g. Movielens and

Epinions.com. Despite the success, the similarity-based communities have major

limitations, for example:

(1) Agents usually rate few items [5]. It is quite often the case that agents do

not co-rate the minimum number of items in common required to compute

the similarity. For example, it is required that agents must co-rate at

least two items in common to calculate the Pearson correlation coefficient,

which is a widely used similarity metrics. Hence, the number of similar

agents is usually small. As a consequence, a large number of agents are

not able to make predictions, since no similar agents can be located.

(2) By intentionally rating only a small number of items, malicious agents

are easier to achieve high similarity since the number of possible common

items is small. For example, Pearson correlation gives a similarity of either

1, -1 or 0 when the number of common items is 2. Hence, malicious agents’

noisy ratings3 can easily outweigh others’ ratings, leading to the biased

predictions on given items.

1Movielens: http://movielens.umn.edu/
2In the rest of this paper, we shall use the agent to denote the user who is the owner of

the agent.
3Presence of noisy ratings means that some malicious agents might give unfairly positive or

negative recommendations for the purpose of biasing other agents’ predictions for or against
certain items.



(3) Most of the communities are centralized. It is generally required that a

centralized server goes through every member to calculate its similarity

between the active agent (i.e. the one for whom the community is making

prediction). The computation burden of the centralized server increases

quickly with the increase of the number of agents, leading to poor scala-

bility.

To overcome the above-mentioned limitations, we incorporate trust into the

domain of item recommendation.

1.2 Defining Trust

After Marsh’s seminal work [11] to formalize trust in a computational way,

there have been emerging research efforts to formalize computational trust and

to apply trust in different domains of computer science, e.g. multi-agent system

[17, 20], Semantic Web [19], and so on. Trust provides a mechanism to allow

agents to reason about others’ reliability and competence within the multi-

agent system. In such systems, agents interact with others whose reliability and

competence are usually not known.

Trust is a context-specific concept, and hence it is not surprising to see

different interpretation of trust [9]. For the purpose of this work, we adapt

Barber’s definition[2] which defines trust to be the expectation of technically

competent role performance. More specifically, we interpret trust as an agent’s

expectation of another agent’s competence in providing recommendations to

reduce its uncertainty in predicting new items’ ratings.

Suppose agent Agt usually gives high ratings on items which agent Ags gives

low ratings on, and vice verse. The similarity between Agt and Ags is very low

in that they have low “agreement” on each individual item. However, Ags can

still place high degree of trust on Ags since Ags can predict the new items’

ratings to be low (high) if Agt gives a high (low) rating for the new items. In

other words, Agt is trustworthy to Ags since Agt has met Ags’s expectation in

reducing the uncertainty when predicting new items’ ratings. Our interpretation

of trust also resembles the practical definition of trust adopted by Epinion.com:

Ags can trust Agt if Agt’s ratings “have been consistently found to be valuable”

[1].

1.3 Overview of the Trust-based Recommendation Com-

munity

Agents connect with other trustworthy agents within the community, which

is basically a P2P overlay network. P2P-based architecture exempts the need



for a centralized server, which makes the trust-based community more scalable

than the traditional similarity-based community. Each agent acts as a peer

servent within the community. It contributes to the community by sharing

recommendations on items to others. At the same time, it asks others for their

recommendations and makes predictions based on local computation.

The three main components of the trust-based recommendation community

are:

(1) A trust metric is designed to quantify the degrees of trust agents should

place on the other agents. The trust metric is computable on most agents.

It is even computable on pairs of agents who only co-rate one item in

common.

(2) The predictions are made as weighted averages of the collected recommen-

dations with agents’ trustworthiness as weights.

(3) The P2P-based architecture is exploited to facilitate agents’ recommenda-

tion discovery and collection, which resembles the content searching in

P2P content sharing network.

It should be noted that the work presented in this paper is not only applicable

in the domain of recommendation, although the current work is conducted in

this specific domain. In fact, our work is generally applicable in domains in

which agents exchange information with each other and agents’ expectance and

experience can be captured in the form of ratings [13].

The rest of this paper is organized as follows. The trust metric is explained

in Section 2. How to make predictions is discussed in Section 3. Experimental

results are presented and analyzed in Section 4. A brief review of related work

is given in Section 5. Finally, Section 6 concludes the paper.

2 The Trust Metric

A trust metric is designed in this section, which quantifies the degree of trust an

agent should place on another agent. As discussed earlier, each agent is treated

equally as a peer servent. Without loss of generality, the rest of this paper is

hence presented from the perspective of a particular agent Ags.

For the ease of the presentation, we first present some notations which will

be used throughout this paper.

There are two categories of entities within the community.

(1) a set of uniquely identifiable items O = {O1, O2, . . . , Oj , . . . , Om},

(2) a set of uniquely identifiable agents Ag = {Ag1, Ag2, . . . , Agi, . . . , Agn},

who give discrete ratings ri,j on the items. ri,j denotes Agi’s rating on Oj

after browsing Oj .



Agt’s ratings

Ags’s ratings 1 . . . j . . . Z Total

1 n11 . . . n1j . . . n1Z R1

...
...

...
i ni1 . . . nij . . . niZ Ri

...
...

...
Z nZ1 . . . nZj . . . nZZ RZ

Total C1 . . . Cj . . . CZ N

Table 1: Ags’s experience with Agt

Agents’ predictions are also given in forms of ratings, with Pri,j denoted

Agi’s prediction on Oj . Agents’ predictions are derived based on trustworthy

agents’ recommendations. The degree of trust that an agent Ags places on

another agent Agt is termed as Ags’s evaluation of Agt’s “trustworthiness”.

Note that agents’ prediction for an item is different semantically from its

rating on an item. The prediction is its pre-experience with the item, while

the rating is its post-experience with the item. Usually there is a threshold,

and agent Ags opts to browse the item only if its prediction on the item is

higher than the threshold. More formally, Ags can make the decision by taking

into account the utility and risk of the browsing [3]. Only after it browses the

item will it have a rating on the item. When asked by the other agents for

recommendations, an agent shares its rating (i.e. post-experience with items)

but not the predictions.

2.1 Derivation of the Trust Metric

The trust metric is experience-based. That is to say, Ags’s evaluation of agent

Agt’s trustworthiness is calculated based on its previous experience with Agt
4.

Ags compiles its experience with Agt in a table as shown in Table 1. In Table

1, Z denotes the number of possible ratings, and N is the total number of

common items co-rated by Ags and Agt before. Each cell nij in Table 1 records

the number of co-rated items on which Agt’s recommendations are j while Ags’s

ratings are i. nij = 0 if there is no such common item. Ri is the sum of all

the cells in the row i, i.e. Ri =
∑Z

j=1 nij . And Cj is the sum of all the cells in

the column j, i.e. Cj =
∑Z

i=1 nij .
∑

i Ri =
∑

j Cj = N . After compiling the

experience with Agt, agent Ags can evaluate Agt’s trustworthiness :

Definition 1 Ags evaluates Agt’s trustworthiness Trs,t based on previous

experience with Agt as:

4Ags has previous experience with Agt means Agt’s recommendations have ever been used
by Ags to make predictions.



Trs,t =
N
P

i

P
j

n2

ij

Cj
−
P

i
R2

i

N2 −
P

i
R2

i

(1)

Some explanations would be helpful in understanding the derivation of Trs,t.

Consider two cases:

Case (1) : Agent Ags predicts a new item’s rating without Agent Agt’s rec-

ommendation;

Case (2) : Agent Ags predicts a new item’s rating given Agent Agt’s recom-

mendation, say j.

In Case (1), Ags predicts the new item’s rating solely based on its own rating

history, i.e. it predicts the new item’s rating as a particular rating i with a

probability Ri/N . In the long run, the proportion of the correct predictions (i.e.

prediction=rating) in this case is
∑

i(Ri/N)2 [6]. In Case (2), the probability

that Ags predicts the new item’s rating as i given Agt’s recommendation j

is essentially the conditional probability of i’s occurrence given j’s presence

in previous experience. That is, Ags predicts the item’s rating as i with a

probability (
nij

N )/(
Cj

N ). In the long run, the proportion of the correct predictions

in this case is
∑

i

∑
j(

nij

N )2/(
Cj

N ) = 1
N

∑
i

∑
j(n

2
ij/Cj) [6].

As discussed before, trust is interpreted as an agent’s expectation of another

agent’s competence in providing recommendations to reduce its uncertainty in

predicting new items’ ratings. Hence, trustworthiness can be quantified as an

agent’s degree of reduction in the uncertainty of predicting new items’ ratings

given others’ recommendations, which is basically the reduction in the propor-

tion of the incorrect predictions as Ags goes from Case (1) to Case (2). Hence,

we have:

(1−
P

i
(Ri/N)2)−(1− 1

N

P
i

P
j
(n2

ij/Cj))

1−
P

i
(Ri/N)2

=
N
P

i

P
j

n2
ij

Cj
−

P
i
R2

i

N2
−

P
i R2

i

Thus, the definition of Trs,t in Eq (1) is reached.

Trs,t takes values in [0, 1]. Trs,t = 0 implies that Agt does not reduce Ags’s

uncertainty at all. Trs,t = 1 implies Ags’s perfect predictability of the new

items’ ratings given Agt’s recommendation.

Note that different agents may have different evaluation of Agt’s trustwor-

thiness. This is because the trust metric is experience-based and different agent

may have different experience with Agt.



2.2 Dummy Experience

As discussed before, nij = 0 in Table 1 means there are no co-rated items on

which Agt’s recommendations are j while Ags’s ratings are i. Intuitively, each

cell nij in Table 1 should be initiated as 0. However, this intuitive treatment will

lead to the undefined 0/0 in the value of Trs,t when there is only one co-rated

item between Ags and Agt.

In order to avoid the undefined 0/0, the dummy experience is introduced.

That is, each cell in Table 1 is initiated with dummy experience as 1/Z instead of

0. After initialization, Trs,t = 0. This is consistent with the common sense that

Agt does not reduce Ags’s uncertainty before their first experience. After Agt

shares recommendation on item as j for the first time, the dummy experience in

the column j of Table 1 is cleared first, and then corresponding cell in column

j is updated with real co-rated item counts.

There is another case leading to the undefined 0/0: each column of Table 1

has only one non-zero cell, and all the non-zero cells are in the same row. In this

case, there is only one non-zero cell in each column, which means Ags always

has only one possible prediction given Agt’s recommendations. This implies

Ags’s perfect predictability of new items’ ratings give Agt’s recommendations.

Consequently, Trs,t = 1 in this case.

2.3 Update of the Trustworthiness

When Ags joins the community, it randomly selects a number of existing member

agents, with whom it exchanges ratings on some items. Ratings exchanged

at this stage are also taken as Ags’s experience with the other agents. Ags

evaluates the trustworthiness of each of those randomly-selected agents using

Eq.(1), and connects with at most D agents with highest trustworthiness score as

its direct neighbors. Then with the help of trust propagation (trust propagation

will be discussed in the next section), Ags will discover a larger number of

trustworthy agents. At the same time, with more items encountered, Ags’s

experience with the other agents evolves. Ags update its evaluations of those

agents’ trustworthiness accordingly since the trust metric is experience-based.

Update of an agent’s trustworthiness score is triggered upon Ags obtaining

its rating on a new item, i.e. its post-experience with the item after browsing

the item. Suppose Ags just browsed the item On, and its rating on On is i.

When making the prediction, Agt contributes its recommendation on On as j.

If Agt is an agent that Ags has previous experience, Ags updates its experience

with Agt as nij = nij + 1 in Table 15. Otherwise, Ags creates a new table to

5The dummy experience in column j needs to be cleared first if it is the first time that Agt

shares a recommendation as j.



Agt’s ratings

Ags’s ratings 1 2 3 4 5 Total

1 1/5 1/5 1/5 1/5 0 4/5
2 1/5 1/5 1/5 1/5 0 4/5
3 1/5 1/5 1/5 1/5 1 9/5
4 1/5 1/5 1/5 1/5 0 4/5
5 1/5 1/5 1/5 1/5 0 4/5

Total 1 1 1 1 1 5

Table 2: Ags’s experience with Agt

record the experience with Agt. Dummy experience in column j is cleared first,

then nij is set to 1. Trs,t is then updated using Eq. (1) correspondingly.

An example is used to illustrate the evaluation of the trustworthiness and

its update. Suppose a 5-point discrete rating schema is applied. Agent Agt’s

recommendation on an item is 5, and Ags’s own rating on the item is 3. Ags

has no previous experience with Agt, so the experience with Agt is updated by

creating a new table, clearing the dummy experience in the 5th column first,

and then filling the cell n35 = 1. After that, Ags’s experience with Agt is shown

in Table 2.

Now Trs,t can be evaluated as:

Trs,t =
5∗(4∗5∗(1/5)2+1)−(4∗( 4

5
)2+( 9

5
)2)

52−(4∗( 4

5
)2+( 9

5
)2)

= 225−145
625−145 = 0.1667

As this example shows, the trustworthiness score is computable on pairs of

agents with only one common item. Moreover, an agent is not able to achieve a

high trustworthiness by intentionally sharing recommendations only on a small

number of items.

3 Recommendation Collection and Rating Pre-

diction

We have presented the evaluation and update of trustworthiness in Section 2.

In this section, we shall discuss how to discover and collect trustworthy agents’

recommendations, and how to make predictions based on trustworthy agents’

recommendations.

3.1 Recommendation Discovery and Trust Propagation

Ags goes to its direct neighbors first when discovering recommendations. Each

direct neighbor gives its recommendation if it does have rating on the target

item. Moreover, each direct neighbor is also required to returns all its direct



neighbors as well as its evaluation of their trustworthiness as referrals to Ags.

Instead of going to all the referrals, Ags applies a probabilistic strategy in de-

termining whether to visit a particular referral at the next step. Suppose Agd

is the currently-visited agent, and it returns a number of referrals. Ags opts to

visit a particular referral Agm at next step with a probability Trd,m, and opts

not to visit Agm with a probability 1−Trd,m. Here, Trd,m is Agd’s evaluation of

Agm’s trustworthiness. Then each visited agent carries out the similar actions

as Ags’s direct neighbors do. The only difference is that it returns referrals only

when it has no recommendation to give.

The referral-based recommendation discovery resembles the content search-

ing in the unstructured P2P content sharing network like Gnutella6. The main

difference is that: Ags applies a probabilistic strategy in determining whether to

visit a particular referral during the course of recommendation discovery; while

in P2P content searching, usually all referrals are visited. The probabilistic

strategy has the following advantages:

• Agents with higher trustworthiness have a higher probability to be visited.

This helps Ags to discover more trustworthy recommendations, which

makes the prediction more accurate.

• Nevertheless, agents with lower trustworthiness may also be visited by Ags

though with lower probability. This gives those less trustworthy agents op-

portunities to contribute recommendations, which helps to promote Ags’s

evaluation of their trustworthiness.

During the recommendation discovery, Ags will visit an agent only once in

order to avoid duplicated recommendations from the same agent. For example,

in Figure 1, Ag3 and Ag6 are two referrals returned by Ag5. However, Ag1 does

not visit them (shown by the dashed line in the figure) since they are visited

and their recommendations has been collected already. The path starting from

the initiating agent Ags connecting its direct neighbor and the series of visit

agents during the recommendation discovery is called the referral chain. And

agents who can give recommendations are always at the other end of the referral

chain. An upper limit (U) is applied on the referral chain length. Ags stops

discovering recommendations if the current referral chain length reaches U no

matter whether recommendation has been collected or not by following this

chain.

Recommendation discovery usually discovers more than one agent that gives

recommendation. For example, in Figure 1 both Ag4 and Ag7 give recommen-

dation on item O1. Trust metric can help Ags evaluate those agents’ trustwor-

thiness, if it has previous experience with them. However, it is not possible that

6Gnutella RFC: http://rfc-gnutella.sourceforge.net/.



Ag1

Ag2 Ag3

Ag4 Ag5 Ag7

O1

Ag6

Figure 1: Agent Ag1 collects recommendations for Item O1

Ags has experience with all of the agents that give recommendations. Hence,

trust propagation is necessary to help Ags evaluate the trustworthiness of agents

who give recommendations but it has no previous experience with.

A number of trust propagation mechanisms have been proposed, e.g. [8, 13].

A detailed discussion and comparison of trust propagation is beyond the scope

of this paper. In this paper, we simply employ the trust propagation mechanism

proposed in [13]. Suppose in a given referral chain starting from agent Ags, Agm

is one of Agd’s referrals to Ags. Ags evaluates Agm’s trustworthiness via trust

propagation as:

Trs,m = Trs,d ∗ Trd,m + (1 − Trs,d) ∗ (1 − Trd,m) (2)

where Trs,d is Ags’s evaluation of Agd’s trustworthiness, and Trd,m is Agd’s

evaluation of Agm’s trustworthiness.

Then Eq. (2) is computed recursively by Ags over all the agents along

the referral chain to derive the trustworthiness of the agent at the other end

of the referral chain. For example, in Figure 1, there are two referral chains:

Ag1 → Ag2 → Ag4 and Ag1 → Ag3 → Ag7. Along each chain, Tr1,2 = 0.4,

Tr2,4 = 0.4, Tr1,3 = 0.6, Tr3,7 = 0.1, so Tr1,4 = 0.4 ∗ 0.4 + 0.6 ∗ 0.6 = 0.52,

and Tr1,7 = 0.6 ∗ 0.1 + 0.4 ∗ 0.9 = 0.42. Suppose Ag4 has no recommendation

on O1, and returns Ag8 as a referral. Tr4,8 = 0.3, then Tr1,8 = Tr1,4 ∗ Tr4,8 +

(1 − Tr1,4) ∗ (1 − Tr4,8) = 0.52 ∗ 0.3 + 0.48 ∗ 0.7 = 0.492.

3.2 Rating Prediction

The collected recommendations are adjusted before being used to make predic-

tions if Ags has previous experience with the agents who give the recommenda-

tions. Suppose agent Agx gives recommendation on the item On as rx,n = j. As

discussed in the Case (2) in Section 2.1, given Agx’s recommendation j, Ags

predicts the new item’s rating as i with a probability
nij

N /
Cj

N = nij/Cv. Or, to



put it in another way, Agx’s recommendation rx,n = j is adjusted to Prs,x,n = i

with a probability nij/Cv. If Ags has no previous experience with Agx, Agx’s

recommendation rx,n = j is used directly without adjustment.

It is possible that recommendation discovery does not collect any recom-

mendation, e.g. no agent in the community gives recommendation, or the upper

limit U is reached before any recommendation has been discovered. In this case,

Ags would resort to its direct neighbors to make the predictions. It selects a

pseudo-recommendation as Prs,x,n = i with a probability Ri/N for each direct

neighbor Agx. This is in fact the Case (1) in Section 2.1. With the pseudo-

recommendation, agent Ags is always able to make predictions even on items

that are newly-introduced and no agents have rated before.

Ags then predicts the new item On’s rating Prs,n as:

Prs,n =

P
Agx∈As,n

Trs,x ∗ Prs,x,nP
Agx∈As,n

Trs,x

(3)

Here As,n is the set of agents that give recommendations (or pseudo-recommendations

when no recommendation is available) on item On for agent Ags. Prs,x,n is the

adjusted recommendation or pseudo-recommendation given by agent Agx on

item On for agent Ags. Each agent in As,n is assigned a weight which equals to

its trustworthiness Trs,x.

4 Experimental Study

4.1 Experiment Setup

Experiments have been conducted to study the proposed trust-based commu-

nity’s performance against the traditional similarity-based community. A movie

recommendations community is setup, which is simulated based on the Movie-

Lens dataset7. The dataset contains 100,000 ratings of 5-point scale of 1682

items by 943 agents. Each rating entry has 4 main fields: the ID of the agent

who gives the rating, the ID of the item, the rating, and the timestamp when the

rating was given. The whole dataset is split into two subsets with 80,000 and

20,000 ratings respectively. The latter subset is used to simulate the running

of community. Ratings in the other subset are taken as agents’ experience with

the items before joining the community. Those ratings are used in the ratings

exchange when agents join the community, which facilitates the direct neighbors

selection.

For the purpose of comparison with traditional similarity-based community,

7MovieLens dataset is publicly available at http://www.cs.umn.edu/research/GroupLens/data/.



a similarity-based community with same dataset is also setup, which employs

Pearson correlation efficient as the similarity metric. To make the comparison

fair, a similar mechanism of recommendation collection with similarity propa-

gation is also implemented. As reported in [10], agents with negative similarity

are ignored when making prediction in the similarity-based community.

The simulation is conducted in a leave-one-out manner. In each single cycle

of the simulation, one rating is taken out by the ascending order of the times-

tamp. In each cycle, the real rating is masked intentionally. Then the active

agent (as indicated by the agent ID field in the entry) predicts the rating of

the item. The agent will only browse the item when the prediction is higher

than a pre-defined threshold. In the simulated community, it is assumed that

the threshold is always 0. Thus the agents opt to browse all items encountered.

The predictions are then compared against the masked real ratings in order to

measure the performance of the recommendation community.

The first group of the experiments is to study the prediction accuracy and

coverage without the presence of noisy ratings. The experiments have two pa-

rameters to tune: the number of direct neighbors that each agent maintains (D),

and the upper limit of referral chain length (U). We tune the value of these two

parameters to study accuracy and coverage in different settings, the values of

D and U are tuned to be: D ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80},

and U ∈ [3, 8].

The second group of experiments is to study robustness in the presence of

noisy ratings. In this paper, only one type of noisy rating is studied, i.e. a

number of malicious agents intentionally give noisy ratings in order to manip-

ulate other agents’ prediction to certain target ratings. There are two forms

of noisy ratings, with different target ratings: nuke whose target rating is the

minimum of all the possible ratings, and push whose target rating is the maxi-

mum of all the possible ratings. In the simulated community, the target rating

of nuke noisy rating is 1, and the target rating of push noisy rating is 5. The

community’s robustness in presence of different ratios of agents giving noisy

ratings is studied. The ratios of agents giving noisy ratings are tuned to be

25%, 50%, 75%, and 100%.

Experiments with the same settings have been run 3 times, and the average

of the results derived in all the 3 experiments is taken as the final result.

4.2 Measurement of the Results

Mean Absolute Error (MAE) is usually applied to measure the prediction accu-

racy, which is basically the average absolute difference between the predictions

and the (masked) real ratings over all items and all agents. However, since



each agent makes predictions individually with only local computation in the

trust-based community, it is more reasonable to measure each agent’s prediction

accuracy separately. For this reason, we employ a different interpretation of the

MAE metric, which first calculated the mean prediction error for each agent

and then averaged all agents’ mean errors. A smaller value of MAE implies a

higher accuracy.

Coverage is measured as the percentage of the items on which that the agents

are able to predict ratings.

The robustness of the community in the presence of noisy ratings is measured

by the power of attack (POA) [14]. Let Ot be the targeted item of the malicious

agents, and Ω be the set of agents who predicted item Ot’s rating. The POA

for a particular type of noisy rating ATK is given by:

POA(ATK) =

P
Agi∈Ag

P
Oj∈Ωi

(|rtarget−ri,j |−|rtarget−r′

i,j |)

‖Ωi‖

‖Ag‖
.

Ag is the set of all agents, Agi is one agent in set Ag. Ωi denotes the set

of items rated by Agi, and Oj is one of the item in set Ωi. r′i,j and ri,j are

predictions on item Oj derived by Agi with and without the presence of noisy

ratings respectively. rtarget is the target rating of the malicious agents’s noisy

ratings, e.g. rtarget = 1 for nuke and rtarget = 5 for push in the simulated

community. POA measures the extent that agents’ predictions are manipulated

towards the target rating by the malicious agents. A positive value of POA

means that the predictions have been manipulated towards the target rating.

Otherwise, POA gives a negative value, and POA is 0 if there is no difference

in predictions derived with and without attack.

4.3 Results: Accuracy and Coverage

First of all, we study the coverage. Since the trust metric is computable on most

peers, in most cases agents are able to find trustworthy agents who can give

recommendations. Moreover, pseudo-recommendation enables agents to make

predictions for items that no other agents have rated before. Consequently, the

coverage achieved with the trust-based community is always > 99%. There is

only a tiny portion of agents that are not able to make predictions. This is be-

cause they have not co-rated any items with any other agent, which makes them

to be excluded from community. In contrast, the highest coverage achievable

with traditional similarity-based community is < 80%. The coverage achieved

with the similarity-based CF is shown in Figure 2. It is thus shown that the

trust-based community does improve the coverage of the recommendation.

Then the prediction accuracy is studied. Prediction accuracy (i.e. MAE)
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Figure 2: Coverage of similarity-based community

achieved with trust-based community in different setting of D and U are plotted

in Figure 3. The comparison of MAE achieved by trust-based and similarity-

based community in different settings of D and U is also shown in Figure 4(a)-

4(f). Note that similarity-based CF’s accuracy is only calculated over the items

that agents are able to give predictions.

It is observed from Figure 4(a)-4(f) that the trust-based community does

enhance the prediction accuracy, though the improvement over the traditional

similarity-based community is not significant (usually ∆MAE < 0.05). It is also

observed that generally the improvement is more significant when the values of

D and U are larger, e.g. D > 10 and U > 5. One of the contributing reasons is

that an agent is able to discover more agents that give recommendations with

the increase of the value of D and U . The average numbers of agents giving

recommendations for a single round of prediction in different settings are listed

in Table 3. Another reason is that the predictions are made as weighted sum

of other agents’ recommendations. Consequently, the increase of D and U can

improve the prediction accuracy since if a larger number of agents with higher

trustworthiness are discovered to give recommendations.

However, as Figure 3 shows, the accuracy of the trust-based community does

not increase significantly when D > 10 and U > 5. The total number of the

referrals that an agent encounters during the recommendation discovery is ap-

proximately DU . When D > 10 and U > 5, DU >> N = 943, a peer can

almost reach all other peers. Most of the referrals are not visited in order to

avoid duplicated recommendation, though there are a huge number of referrals

returned. Hence, the increase in the number of referral with the increase in the
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Figure 3: MAE achieved by the trust-based community

D U Trust-based Similarity-based

D = 5
U = 2 0.68 0.79
U = 5 1.98 2.13
U = 8 5.00 5.89

D = 50
U = 2 1.54 1.01
U = 5 7.37 3.70
U = 8 34.00 12.26

D = 100
U = 2 1.61 1.03
U = 5 8.68 4.11
U = 8 37.63 16.44

Table 3: Average number of agents giving recommendations

values of D and U does not increase the number of agents whose recommenda-

tions are taken into account in making predictions when D > 10 and U > 5.

Consequently, the improvement produced by the increase in the values of D and

U becomes insignificant when D > 10 and U > 5 since the predictions are made

as weighted average of recommendations.

4.4 Results: Robustness

Inspired by the results of the first group of experiments, we choose D = 10

and U = 3 to run the second group of experiments. Robustness (measured by

POA) in the presence of different ratios of malicious agent giving noisy ratings

is shown in Table 4.

It is observed in Table 4 that with more maliciou agents giving noisy rat-

ings, the predictions are biased toward the target ratings closer. Nevertheless,

the trust-based community is more robust than its similarity-based counterpart
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(c) Comparison of MAE (U = 5)
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(d) Comparison of MAE (U = 6)
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(e) Comparison of MAE (U = 7)
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Figure 4: Coverage and Accuracy of the Similarity-based CF and the proposed
method



Noisy rating
ratios

POA (Push) POA (Nuke)
Trust-based Similarity-based Trust-based Similarity-based

25% 0.0688 0.0410 0.0722 0.0238

50% 0.1105 0.1880 0.1430 0.2145

75% 0.1375 0.2020 0.5305 0.6408

100% 0.1788 0.2211 0.6730 0.7617

Table 4: POA w.r.t. different ratios of agents giving noisy ratings

in the presence of noisy ratings. Since the predictions are made as weighted

average of other agents’ recommendations, a high weight is necessary for the

malicious agent to successfully bias the predictions. In order to achieve high

trustworthiness (i.e. weights in the trust-based community), an agent needs to

contribute more recommendations to Ags in order to clear as many columns

with dummy experience as possible. However, sharing recommendations across

many columns does not necessarily increase the trustworthy score. If the non-

zero cells distribute over different rows but within same column in Table 1, the

uncertainty would raise too, which leads to the decrease of the trustworthiness.

Consequently, it takes more effort for malicious agents to get high trustwor-

thiness before they can successfully manipulate Ags’s predictions. This helps

to mitigate the malicious agents’ influence. In contrast, agents are easier to

achieve high similarities (i.e. weights in the similarity-based community) with

high probability if they intentionally give recommendations on a small number

of items.

Moreover, an agent does not make the prediction the new items’ ratings by

carrying out weighted average on the collected recommendations directly in the

trust-based community. Instead, a recommendation is adjusted according to the

agent’s previous experience (if any) with the other agent who gives the recom-

mendation. Even if a malicious agent manages to achieve high trustworthiness,

the influence of its noisy ratings can still be mitigated by the recommendation

adjustment. In contrast, the predictions are made with the recommendations

directly in the similarity-based community. As a result, the trust-based commu-

nity is more robust in the presence of noisy ratings than its the similarity-based

community.

5 Related work

Work has been reported to introduce trust to overcome the limitations of tra-

ditional similarity-based recommendation as discussed in Section 1, e.g. [12,

15, 16]. In [12], it is shown that introduction of trust does improve the predic-

tion accuracy and coverage of the recommendation community. Pouwelse. et

al propose to establish trust through identifying real world friends [16]. This is



not practical, however, since pseudonyms are usually used in cyberspace, and

it is not easy to connect pseudonyms with real identities. Papagelis et al. fo-

cus on developing a computational model to establish trust between agents by

exploiting the transitive nature of the trust [15].

All of these assume that an agent already has the ability to determine the

degrees of trust it should place on others, and do not make clear how an agent

can determine the degrees of trust it should place on the other agents. This

paper goes beyond existing work in that it proposes a practical trust metrics,

with which agents quantify the degrees of trust it places on others based on

previous direct experience.

6 Conclusions and Future work

In this paper, we have proposed a trust-based recommendation community

which incorporates trust into the domain of item recommendation. A trust

metric is designed to quantify the degree of trust an agent should place on other

agents. Then agents make prediction for new items’ rating as a weighted av-

erage of trustworthy agents’ recommendations, with agents’ trustworthiness as

weights. In order to mitigate the influence of noisy ratings, the other agents’ rec-

ommendations are adjusted before being used to make predictions. The trust-

based community possesses many advantages, as shown by the experimental

results:

(1) the trust-based community is able to give more accurate predictions than

the similarity-based community,

(2) the trust-based community manages to achieves a coverage that is much

higher than the one achieved with similarity-based community,

(3) and the trust-based community is more robust in the presence of noisy

ratings than the similarity-based community.

The prerequisite of trust-based community is that agents’ experience with

the items can be represented by discrete ratings. This prerequisite is rational

and practical as most of the real world scenarios apply discrete ratings, e.g.

MovieLens and Epinions. In scenarios where agents’ experience are represented

as continuous ratings, the trust-based community is still applicable if the con-

tinuous ratings are stratified into discrete bins.

Another concern is the storage overhead of the trust-based community. To

compute the trust metrics, each agent needs to maintain and compile its previous

experience with other agents in a table. Generally, the number of possible

discrete ratings is usually less than 7, e.g. there are only 5 ratings available

in both MovieLens and Epinions. In fact, studies have already shown that



reliability of ratings collected does not increase substantially if the number of

ratings is more than 7 [7]. Hence tables used by agents to compile the experience

require small storage.

Our future work includes the following. Currently, the direct neighbors

chosen when an agent joins the community are not changed during its whole

life cycle in the community. It is possible that some direct neighbors become

less trustworthy with more experience accumulated. In this case, those less

trustworthy direct neighbors should be replaced by other agents that are more

trustworthy. The performance of the trust-based community with neighbor

replacement is to be further investigated.

In current work, we only study the trust in the context of opinion exchange

[4] within the domain of item recommendation. In future work, trust in multi

context within the domain of item recommendation is to be further studied, e.g.

in the contexts of opinion exchange and reputation exchange [4, 21].
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