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ABSTRACT

Previous studies have demonstrated the advantages of single-ISA
heterogeneous multi-core architectures for power and performance.
However, none of those studies examined how to design such a
processor; instead, they started with an assumed combination of
pre-existing cores.

This work assumes the flexibility to design a multi-core architec-
ture from the ground up and seeks to address the following ques-
tion: what should be the characteristics of the cores for a hetero-
geneous multi-processor for the highest area or power efficiency?
The study is done for varying degrees of thread-level parallelism
and for different area and power budgets.

The most efficient chip multiprocessors are shown to be hetero-
geneous, with each core customized to a different subset of appli-
cation characteristics — no single core is necessarily well suited to
all applications. The performance ordering of cores on such pro-
cessors is different for different applications; there is only a partial
ordering among cores in terms of resources and complexity. This
methodology produces performance gains as high as 40%. The per-
formance improvements come with the added cost of customiza-
tion.

1. INTRODUCTION

Multiple-core processor architectures are becoming increasingly
attractive as an option to provide high instruction throughput while
keeping power and complexity under control. But multi-core pro-
cessors also give the designer more flexibility to meet specific per-

formance/power goals. In particular, single-ISA heterogeneous multi-

core architectures have been shown to provide significant power
and performance advantages for chip multiprocessors (CMPs) [10,
11]. Such an architecture consists of multiple core types on the
same die; each core representing a different point in the power-
performance continuum. Applications are mapped to cores in such
a way that each application executes on a core that best fits its run-
time resource requirements. This results in higher overall compu-
tational efficiency than conventional homogeneous CMPs.
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While the previous proposals demonstrated the benefits of het-
erogeneity, they gave no insight into what constitutes, or how to
arrive at, a good heterogeneous design. Previous work assumed a
given heterogeneous architecture. More specifically, those archi-
tectures were composed of existing architectures, either different
generations of the same processor family [11, 10, 4, 6], or volt-
age and frequency scaled editions of a single processor [2, 3, 5,
9]. While these architectures surpassed similar homogeneous de-
signs, they failed to reach the full potential of heterogeneity, for
three reasons. First, the use of pre-existing designs presents low
flexibility in choice of cores. Second, those core choices maintain
a monotonic relationship, both in design and performance — for ex-
ample, the most powerful core is bigger or more complex in every
dimension and the performance-ordering of the cores is the same
for every application. Third, all cores considered perform well for
a wide variety of applications — we show that the best heteroge-
neous designs are composed of specialized core architectures.

A heterogeneous architecture, and particularly a fully custom
heterogeneous processor not necessarily composed of pre-existing
cores, incurs additional costs in design, verification, and testing.
A key goal of this research is to evaluate the full benefits of these
architectures, so that this trade-off can be more appropriately eval-
uated by processor manufacturers.

In actually deriving the best designs for a variety of multipro-
gramming workloads, power and area constraints, level of thread-
ing, etc., we make three significant contributions. First, we re-
evaluate the benefits of heterogeneity in power and area efficient
architectures, showing new benefits and higher gains. Performance
improvements of up to 40% are shown. Second, we demonstrate
methodologies for arriving at good heterogeneous designs — we ex-
amine both those that find the best designs but do not scale well to
larger design spaces, and those that scale yet still find good archi-
tectures. Third, by actually finding the best designs across many
different assumptions and constraints, we identify a number of key
principles critical to the effective design of future chip multiproces-
sors.

More specifically, this study leads to several conclusions regard-
ing effective heterogeneous CMP design.

e The most efficient heterogeneous multiprocessor is not con-
structed of cores that make good general-purpose uniproces-
sor cores, or even those cores that would appear in a good
homogeneous multiprocessor architecture.

e The best way to design a heterogeneous CMP is by tuning
each individual core for a class of applications with common
characteristics.



e Customizing cores to subsets of workloads results in proces-
sors that are typically non-monotonic (i.e., there is no strict
gradation among cores in terms of overall performance or
complexity).

e Performance advantages of heterogeneous, and even non-
monotonic, multiprocessors continue to hold even for a col-
lection of completely homogeneous workloads. In those cases,
such processors exploit the diversity across different work-
loads.

The rest of the paper is organized as follows. Section 2 describes
prior related work. Section 3 describes the approach followed to
navigate the design space and arrive at the best designs for a given
set of workloads. Section 4 discusses the benefits of customiza-
tion. Section 5 gives the methodology followed for our evaluations
and describes the area, power, and performance models. Section 6
provides the results of our experiments. Section 7 concludes.

2. RELATED WORK

Prior work on single-ISA heterogeneous multi-core architectures

demonstrates the benefits of heterogeneity for both power/performance

efficiency and area/performance efficiency. However, those stud-
ies focus on the benefits of an assumed design, and thus give little
insight into what constitutes, or how to arrive at, a good heteroge-
neous design.

Initial proposals for heterogeneous multi-core architectures demon-

strated the power efficiency of such architectures. Kumar, etal. [10]
propose single-ISA heterogeneous multi-core architectures for pro-
cessor power reduction. The proposal consists of cores from dif-
ferent generations of the Alpha processor family on the same die.
They consider a single application running at a time that gets mapped
intelligently to the right core. The energy benefits of heteroge-
neous multi-core architectures is also explored by Ghiasi and Grun-
wald [4]. They consider single-ISA, heterogeneous cores of differ-
ent frequencies belonging to the x86 family, and use them to control
the thermal characteristics of a system. Applications run simulta-
neously on multiple cores and the operating system monitors and
directs applications to the appropriate job queues. Grochowsky,
et al. [6] compare voltage/frequency scaling, asymmetric (hetero-
geneous) cores, variable-sized cores, and speculation as means to
reduce the energy per instruction and find that heterogeneous cores
result in the most benefit.

Another set of proposals use heterogeneous multi-core architec-
tures to improve processor performance for fixed area and power
budgets. Kumar, et al. [11] demonstrate the performance advan-

tages of heterogeneous multi-core architectures for multi-programmed

heterogeneous workloads. They consider multiprocessors consist-
ing of EVS5 and/or EV6 cores and show that on-chip heterogene-
ity results in more efficient computation and helps target a broad
spectrum of thread-level parallelism. Morad, et al. [15] explore
the theoretical advantages of placing asymmetric core clusters in
multiprocessor chips. They show that asymmetric core clusters are
expected to achieve higher performance per area and higher perfor-
mance for a given power envelope. The analysis is extended in [16].
Annavaram, et al. [2] evaluate the benefits of heterogeneous multi-
processing to minimize the execution times of multi-threaded pro-
grams containing nontrivial parallel and sequential phases, while
keeping the CMP’s total power consumption within a fixed budget.
They report significant speedups.

Balakrishanan, et al. [3] seek to understand the impact of such an
architecture on software. They show, using a hardware prototype,
that asymmetry can have significant impact on the performance of
a wide range of commercial applications.

The power-performance trade-offs for multi-core architectures
was also studied recently by Li, et al. [13]. That work does not
consider heterogeneous chip multiprocessors, however.

3. FROMWORKLOADSTOAMULTI-CORE
DESIGN

The goal of this research is to identify the characteristics of cores
that combine to form the best heterogeneous architectures, and also
demonstrate principles for designing such an architecture. Such a
methodology would start with a set of applications and a set of
constraints on the processor. It should then identify the best archi-
tecture for that workload, given some objective function to evaluate
the goodness of an architecture.

Because this methodology requires that we accurately reflect the
wide diversity of applications (their parallelism, their memory be-
havior), running on widely varying architectural parameters, there
is no real shortcut to using simulation to characterize these combi-
nations.

The design space for even a single processor is large, given the
flexibility to change various architectural parameters; however, the
design space explodes when considering the combined performance
of multiple different cores on arbitrary permutations of the appli-
cations. Hence, we make some simplifying assumptions that make
this problem tractable so that we navigate through the search space
faster; however, we show that the resulting methodology still re-
sults in the discovery of very effective multi-core design points.

First, we assume that the performance of individual cores is sep-
arable — that is, that the performance of a four-core design, running
four applications, is the sum (or the sum divided by a constant fac-
tor) of the individual cores running those applications in isolation.
This is an accurate assumption if the cores do not share L2 caches
(which we validate in the Appendix) or memory channels.

However, we also show in the Appendix that this methodology
still makes good design decisions with shared L2 caches for our
workloads. This assumption dramatically accelerates the search
because now the single-thread performance of each core (found
using simulation) can be used to estimate the performance of the
processor as a whole without the need to simulate all 4-thread per-
mutations.

Since we are interested in the highest performance that a proces-
sor can offer, we assume good static scheduling of threads to cores.
Thus, the performance of four particular threads on four particular
cores is the performance of the best static mapping. However, this
actually represents, in some sense, a lower bound on performance.
Prior work has shown that the ability to migrate threads dynam-
ically during execution only increases the benefits of heterogene-
ity [11] as it exploits intra-thread diversity — we show in Section 6
that it continues to hold true for the best heterogeneous designs that
we come up with under the static scheduling assumption.

To further accelerate the search, we consider only major blocks
to be configurable, and only consider discrete points. For example,
we consider 2 instruction queue sizes (rather than all the intermedi-
ate values) and 4 cache configurations (per cache). But we consider
only a single branch predictor, because the area/performance trade-
offs of different sizes had little effect in our experiments. Values
that are expected to be correlated (e.g., size of re-order buffer and
number of physical registers) are scaled together instead of sepa-
rately. This methodology might appear to be crude for an important
commercial design, but we believe that even in that environment
this methodology would find a design very much in the neighbor-
hood of the best design. Then, a more careful analysis could be
done of the immediate neighborhood, considering structure sizes



Issue-width 1,2.4

Int-FP PhysReg-ROB (OO0)

64-64-32, 128-128-64

8KB DM, 16KB 2way, 32KB
I-Cache 4way, 64KB 4way

L2 Cache 1MB/core, 4-way, 12cycle access

8KB DM, 16KB 2way, 32KB

D-Cache 4way, 64KB 4way dual ported

Memory Channel

533MHz, doubly-pumped, RDRAM

FP-IntMul-ALU units. 1-1-2,2-2-4

ITLB-DTLB 64, 28 entries

ItQ-TpQ (O00) 32-16, 64-32

Ld/St Queue 32entries

Table 1: Various Parameters and their possible values for configuration of the cores.

at a finer granularity and considering particular choices for smaller
blocks we did not vary.

We only consider and compare processors with a fixed number
(4) of cores. It would be interesting to also relax that constraint in
our designs, but we did not do so for the following reasons. Accu-
rate comparisons would be more difficult, because the interconnect
and cache costs would vary. Second, it is shown both in this work
(Section 6) and in previous work [11] that heterogeneous designs
are much more tolerant than homogeneous when running a differ-
ent number of threads than the processor is optimized for. How-
ever, the methodology shown here need only be applied multiple
times (once for each possible core count) to fully explore the larger
design space, assuming that an accurate model of the off-core re-
sources was available.

The above assumptions allow us to model performance for var-
ious combinations of cores for various permutations of our bench-
marks, thus evaluating the expected performance of the possible
homogeneous and heterogeneous processors for various area and
power budgets.

To search through the design space for a given set of workloads
we follow two techniques — exhaustive search and efficient search.
Our algorithm for finding the best design typically is an exhaustive
search of all core combinations, accounting for every permutation
of our benchmarks on each combination. This approach ensures
that we do indeed find the best combination in each case. While
this approach works for our workloads and architectural variables,
considering more benchmarks and more architectural options will
quickly make the exhaustive approach impractical. In Section 6.5,
we examine more efficient search algorithms and quantify how
closely they come to identifying the best design.

4. CUSTOMIZING CORESTOWORKLOADS

One of the biggest advantages of creating a heterogeneous pro-
cessor as a custom design is that the cores can be chosen in an un-
constrained manner as long as the processor budgetary constraints
are satisfied. We define monotonicity to be a property of a multi-
core architecture where there is a total ordering among the cores
in terms of performance and this ordering remains the same for all
applications. For example, a multiprocessor consisting of EV5 and
EV6 cores is a monotonic multiprocessor. This is because EV6 is
strictly superior to EVS5 in terms of hardware resources and virtu-
ally always performs better than EVS5 for a given application given
the same cycle time and latencies. Similarly, for a multi-core ar-
chitecture with identical cores, if the voltage/frequency of a core
is set lower than the voltage/frequency of some other core, it will
always provide less performance, regardless of application. Fully
customized monotonic designs represent the upper bound (albeit
a high one) on the benefits possible through previously proposed
heterogeneous architectures.

As we show in this paper, monotonic multiprocessors may not
provide the “best fit” for various workloads and hence result in in-
efficient mapping of applications to cores. For example, in the re-
sults shown in [10], mcf, despite having very low ILP, consistently

gets mapped to the EV6 or EV8- core for various energy-related
objective functions, because of the larger caches on these cores.
Yet it fails to take advantage of the complex execution capabilities
of these cores, and thus still wastes energy unnecessarily.

Doing a custom design of a heterogeneous multi-core architec-
ture allows us to relax the monotonicity constraint. That is, it is
possible for a particular core of the multiprocessor to be the high-
est performing core for some application but not for others. For
example, if one core is in-order, scalar, with 32KB caches, and an-
other core is out-of-order, dual-issue, with larger caches, applica-
tions will always run best on the latter. However, if the scalar core
had larger L1 caches, then it might perform better for applications
with low ILP and large working sets, while the other would likely
be best for jobs with high ILP and smaller working sets.

The advantage of non-monotonicity is that now different cores
on the same die can be customized to different classes of applica-
tions, which was not the case with previously studied designs.

5. METHODOLOGY

This section discusses the various methodological challenges of
this research, including modeling the power, real estate, and perfor-
mance of the heterogeneous multi-core architectures.

5.1 Modeling of CPU Cores

For all our studies in this paper, we model 4-core multiprocessors
assumed to be implemented in 0.10 micron, 1.2V technology. Each
core on a multiprocessor, either homogeneous or heterogeneous,
has a private L2 cache and each L2 bank has a corresponding mem-
ory controller. The ITRS roadmap [1] confirms that sufficient pins
are available to support four memory controllers for the assumed
technology. Assuming private L2 caches reduces the dimensions
of the design; however, we also consider a shared L2 cache (of the
same total size) in the Appendix.

We consider both in-order cores and out-of-order (OOO) cores
for this study. We base our OOO processor microarchitecture model
on the MIPS R10000, and our in-order cores on the Alpha EV5
(21164). We evaluate 480 cores as possible building blocks for con-
structing the multiprocessors. This represents all possible distinct
cores that can be constructed by changing the parameters listed in
Table 1. The various values that were considered are listed in the
table as well. We assumed a gshare branch predictor [14] with 8k
entries for all the cores. Out of these 480 cores, there are 96 distinct
in-order cores and 384 distinct out-of-order cores. The number of
distinct 4-core multiprocessors that can be constructed out of 480
distinct cores is over 2.2 billion.

Other parameters that are kept fixed for all the cores are also
listed in Table 1. The various miss penalties and L2 cache access la-
tencies for the simulated cores were determined using CACTI [20].

All evaluations are done for multiprocessors satisfying a given
aggregate area and power budget for the 4 cores. We do not ex-
pect the memory and interconnection subsystem to vary signifi-
cantly with the core type for a given number of cores. We also
confirmed that L2’s contribution to overall power consumption did



Structure Methodology Assumptions
L1 caches [20] Parallel data/tag access
TLBs [201,[71
RegFiles [201,[17] 2 x IW RP, IW WP
Execution Units [71
RenameTables [201117] 3 x IW RP, IW WP
ROBs [20] ITW RP, IWW WP, 20b-entry,6b-tag
1Qs(CAM arrays) [20] ITW RP, IWW WP, 40b-entry,8b-tag
Ld/St Queues [20] 64b-addressing,40b-data

Table 2: Area and power estimation methodology and relevant assumptions for various hardware structures. Renaming for OOO
cores is assumed to be done using RAM tables. IW refers to issue-width, W P to a write-port, and RP to a read-port.
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Figure 1: Area and Power of the cores

not vary significantly between four-core designs taking up the same
area, even when the total number of serviced memory requests dif-
fered. Hence, we do not concern ourselves with the area and power
consumption of anything other than the cores for this study.

5.2 Modeling Power and Area

In this paper, the area budget refers to the sum of the area of the
4 cores of a processor (the L1 cache being part of the core), and
the power budget refers to the sum of the worst case power of the
cores of a processor. Specifically, we consider peak activity power,
as this is a critical constraint in the architecture and design phase of
a processor. Static power is not considered explicitly in this paper
(though it is typically proportional to area, which we do consider).
We model the peak activity power and area consumption of each
of the key structures in a processor core using a variety of tech-
niques. Table 2 lists the methodology and assumptions used for
estimating area and power overheads for various structures. Ta-
ble 3 shows the area and power values for various parameterized
hardware structures that make up a core for different issue widths.
Notice that some of the structures listed are for OOO cores only.
To get total area and power estimates, we assume that the area
and power of a core can be approximated as the sum of its major
pieces. In reality, we expect that the unaccounted-for overheads
will scale our estimates by constant factors (leakage power scaling
might not be linear). In that case, all our results will still be valid.
Figure 1 shows the area and power of the 480 cores used for this
study. As can be seen, the cores represent a significant range in
terms of power (4.1-16.3W) as well as area (3.3-22mm?).  For

this study, we consider 4-core multiprocessors with different area
and peak power budgets. There is a significant range in the area and
power budget of the 4-core multiprocessors that can be constructed
out of these cores. Area can range from 13.2mm? to 88mm?.

Power can range from 16.4W to 65.2W.

5.3 Modeling Performance

This section describes the workloads used for evaluation, the per-
formance evaluation methodology, and the evaluation metric.

5.3.1 Wbrkloads

All our evaluations are done for multiprogrammed workloads.
Table 4 lists the ten benchmarks used for constructing workloads.
Seven benchmarks are from the SPEC suite. These benchmarks
are chosen in the following way. We simulated all 26 benchmarks
from the SPEC suite for 250 million cycles using the EV5 pro-
cessor model after fast-forwarding for an appropriate number of
instructions [19]. Then benchmarks were classified into processor
bound or bandwidth bound based on the number of main mem-
ory references per instruction. Seven benchmarks were then cho-
sen from these two sets in proportion to the occurrence of these
classes of benchmarks in the SPEC suite. Hence, the chosen SPEC
benchmarks are intended to represent the entire SPEC suite. We
also chose groff, deltablue and adpcmc from the IBS, OOCSB and
Mediabench suites respectively. Choosing these three additional
benchmarks recognizes the existence of other kinds of application
behavior that are not displayed by the SPEC benchmarks, while still
considering SPEC representative of a wide variety of applications.

Every multiprocessor is evaluated on two classes of workloads.
The all different class consists of all possible 4-threaded combina-
tions that can be constructed such that each of the 4 threads run-
ning at a time is different. The all same consists of all possible
4-threaded combinations that can be constructed such that all the 4
threads running at a time are the same. For example, a,b,c,d is an
all different workload while a,a,a,a is an all same workload. This
effectively brackets the expected diversity in any workload — in-
cluding server, parallel, and multithreaded workloads. Hence, we
expect our results to be generalizable across a wide range of appli-
cations.

5.3.2 Evaluation methodology

As discussed before, there are over 2.2 billion distinct 4-core
multiprocessors that can be constructed using our 480 distinct cores.
We assume that the performance of a multiprocessor is the sum of
the performance of each core of the multiprocessor, as described
in Section 3. Each core is assumed to have a private L2 cache as
well as a memory channel. This is the same architecture (private
L2s) assumed in [8] and is supported by recent research comparing
private and shared L2 caches for multi-core architectures [12]. We



Structure Area (mm?) Power (W)

8KB-DM cache 0.4 0.638

16KB-2-way cache 0.745 1.018

32KB-4-way cache 1.495 1.744

64KB-4-way cache 2.6 1.869

64KB-4-way dual-ported cache 5.05 3.932

64-entry ITLB 0.119 0.126

128-entry ITLB 0.238 0.186
16-entry InstQ (Int/FP) 0.063,0.203, 0.721 IW =1,2,4) | 0.129, 0.266, 0.565 (IW =1,2,4)
32-entry InstQ (Int/FP) 0.086, 0.273,0.991 IW =1,2,4) | 0.144,0.301, 0.655 IW =1,2,4)
64-entry InstQ 0.16, 0.505, 2.596 W =1,2,4) | 0.186,0.394,0.899 /W =1,2,4)

32-entry 1sQ single-port (Int/FP) 0.1 0.161

32-entry 1sQ dual-ported (Int/FP) 0.319 0.333

Branch Predictor 0.2 0.3
1 ALU 0.385 0.45
1 IntMul 0.295 0.45
1 FPU 0.728 0.9

32-entry Regfile 0.1,0.339, 1.244 (IW =1,2,4) | 0.212,0.439,0.953 IW =1,2,4)
64-entry Regfile 0.137,0.411, 1.5 (IW =1,2,4) | 0.367,0.854,1.897 (IW =1,2,4)
128-entry Regfile 0.192,0.611,2.15(IW =1,2,4) | 0.517,1.154,2.788 (U{W =1,2,4)
32-entry RAM Rename Table 0.049, 0.176, 0.668 (IW =1,2,4) | 0.137, 0.284, 0.606 IW =1,2,4)

32-entry ROB
64-entry ROB

0.04, 0.158, 0.533 (IW = 1,2, 4
0.06, 0.218, 0.753 IW = 1,2,4

2
0.1,0.209, 0.451 W =1,2,4)

Table 3: Derived Area and Power Estimates for Processor Components

Program [ Description |

ammp Computational Chemistry
crafty Game Playing:Chess
eon Computer Visualization
mcf Combinatorial Optimization
twolf Place and Route Simulator
mgrid Multi-grid Solver: 3D Potential Field
mesa 3-D Graphics Library
groff Typesetting package
deltablue | Constraint Hierarchy Solver
Encoder for Adaptive Differential Pulse
adpeme Code Modulati onp

Table 4: Benchmarks used

also validate that the results made with these assumptions still ap-
ply with shared L2 caches for our benchmarks (see the Appendix).

We find the single thread performance of each application on
each core by simulating for 250 million cycles, after fast-forwarding
an appropriate number of instructions [19]. This represents 4800
simulations. Simulations use a modified version of SMTSIM [22].
Scripts are used to calculate the performance of the multiprocessors
using these single-thread performance numbers.

All results are presented for the best (oracular) static mapping of
applications to cores. Note that realistic dynamic mapping can do
better [11] — we show in Section 6 that dynamic mapping continues
being useful for the best heterogeneous designs that our method-
ology produces. However, evaluating 2.2 billion multiprocessors
becomes intractable if dynamic mapping is assumed.

5.3.3 Evaluation Metric

We use weighted speedup [21] for our evaluations. In this paper,
weighted speedup measures the arithmetic sum of each running
thread’s IPC, divided by its IPC on the simplest core considered
in this study when running alone. The IPC is derived by running
a thread for a fixed amount of time. We believe that this metric
guards against multiprocessor design points that produce artificial
speedups by simply favoring high-IPC threads.

For completeness reasons, we also performed all our evaluations
for total IPC as well and found that while the absolute results were
different, there was no significant difference in trends or analysis.

6. ANALYSIS AND RESULTS

In the following sections, we examine the performance and re-
sulting architecture of CMPs designed under various workload and
design constraint assumptions. Section 6.1 considers a particular
4-threaded workload. Section 6.2 extends our analysis to a varied
workload and a variety of different area and power constraints. In
Section 6.3, we quantify the gains observed due to a methodology
that allows non-monotonic cores on the processor. We examine the
effect of different levels of thread-level parallelism for multipro-
gramming workloads in Section 6.4.

6.1 Analyzing multi-core processors for agiven
workload

This section examines a 4-core CMP design for a single, partic-
ular 4-thread workload. This serves a couple of purposes. First,
it demonstrates the use of these design techniques for embedded
MP systems where the workload is known, and also allows us to
demonstrate (in a more concrete example) most of the design prin-
ciples that are also true for the more general case (designing for
an unknown permutation of applications). Thus, we consider here
the four-threaded all different workload consisting of eon, mesa,
deltablue, and mcf. These applications all have different character-
istics (e.g. deltablue has high ILP while mcf is memory bound) and
hence different execution requirements.

Figure 2 shows the highest performing multiprocessors for this
workload for various number of core types. A processor with one
core type is a homogeneous CMP. A processor where all the 4 cores
are different is a processor with 4 core types. We annotate the
graph with descriptions of the actual cores chosen by our system.
IO_icachesize_dcachesize_exec-units represents an inorder core. A
core can have small (exec_units=s) or large (exec_units=I) number
of functional units. OOO_icachesize_dcachesize_exec-units_phys-
regs represents an out-of-order core. Such cores can have either
small (phys_regs=s) or large (phys_regs=I) number of physical reg-
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Figure 2: Core characteristics for the best performing CMPs
for a given workload of eon, mesa, deltablue, and mcf. Area
budget = 30mm?2. Power budget = 30W.

isters and ROB entries. The actual sizes that correspond to these
settings appear in Table 1. (While not true in general, in this sec-
tion no multi-issue cores are chosen, so the issue width does not
appear in this notation). The best multiprocessors are arrived at as-
suming static mapping of applications to cores. However, results
are also shown for dynamic mapping of applications to the cores of
these multiprocessors — in this case, we use the same configuration
of cores chosen assuming static mapping, but allow jobs to swap
cores dynamically during execution, assuming a methodology sim-
ilar to [11].

We find that the highest performing CMP indeed has all cores
different where each core is well-suited for a particular application.
While 10O _8_8_1 (in-order, 8K L1 caches, more functional units) is
well-suited for mesa, OO0O_16_8_s_l (out-of-order, 16K Icache, 8
K Dcache, few functional units, large window) is well-suited for
mcf. O00_16_32_1_[ runs deltablue well and OO0 _64_32_s_1 is
tuned for eon. This processor has 7% higher throughput than the
best homogeneous CMP design for static mapping. The best homo-
geneous CMP has an out-of-order core with 16K I and D caches,
few functional units, and a large instruction window. This proces-
sor is a good fit only for mcf; it is an overfit for mesa and an underfit
for deltablue and eon in terms of L1 cache and registers.

Even though these cores are highly specialized to particular ap-
plications, we get significant gains if we allow threads to move be-
tween cores over time. Thus, when dynamic mapping is assumed,
benefits due to heterogeneity are even higher, as much as 16.7%,
due to the ability to exploit intra-thread diversity. In the follow-
ing sections, we are not able to evaluate dynamic mapping for all
benchmark permutations, but this result confirms the expected re-
sult, that heterogeneous CMPs designed for static mapping only
perform better when threads are allowed to move dynamically.

6.2 Analyzing multi-core processors for agiven
budget

This section extends our analysis in two ways. It considers a
more general workload (designing for an unknown permutation of
a set of applications) and a variety of area and power budgets. For
every fixed area or power limit, an exhaustive search is performed
to find the highest performing 4-core multiprocessor. For all bud-
gets, the results shown assume that all contexts are busy. The con-
figuration chosen is the one that gives the best average performance
over all permutations of the applications.

Figure 3 shows the weighted speedup for the highest performing
4-core multiprocessors within an area budget of 40mm?. The three
lines correspond to different power budgets for the cores. The re-
sults are presented for two workload conditions — all same, when

all the threads of a 4-threaded workload are the same and all dif-
ferent, when all the threads of a 4-threaded workload are different.
These two conditions represent two extremes of heterogeneity. The
points on the far left represent homogeneous CMP designs, all other
points represent varying degrees of heterogeneity. Select points are
labeled with a description of the core selection represented by that
point, to aid in the following discussion.

The results lead to several interesting observations. First, we no-
tice that the advantages of diversity exist even with the all same
workload. This workload might represent parallel workloads with
homogeneous threads, or perhaps a server handling requests with
little diversity. Previous proposals discussed the advantages of het-
erogeneity only with heterogeneous workloads; however, we find
that even homogeneous workloads achieve their best performance
when at least one of the cores is well-suited for the application —
a carefully constructed heterogeneous design ensures that whatever
application is being used for the homogeneous runs, such a core
likely exists. For example, for an area budget of 40mm? and a
power budget of 30W, the best heterogeneous CMP for all same
workloads outperforms the best homogeneous CMP by 4%.

Note that such a CMP is exploiting diversity across different ho-
mogeneous workloads even though there is no diversity within a
workload (that is, we are finding a single best design for all of our
all same workloads).

Second, we observe that the advantages due to heterogeneity for
a fixed area budget depend largely on the power budget available —
as shown by the shape of the lines corresponding to different power
budgets. In this case (Figure 3), heterogeneity buys little additional
performance with a generous power budget (S0W), but is increas-
ingly important as the budget becomes more tightly constrained.
For example, in the all-different case, the best heterogeneous CMP
outperforms the best homogeneous CMP by less than 1% when the
power budget is S0W, by 8% when the power budget is 40W, and
by 17% when the power budget is 30W. This can be explained by
the the fact that without constraints, the homogeneous architecture
can create “envelope” cores — cores that are over-provisioned for
any single application, but able to run most applications with high
performance. For example, for an area budget of 40mm?, if the
power budget is set high (S0W), the “best” homogeneous archi-
tecture consists of 4 000_64_64_1_| cores (i.e., out-of-order, large
caches, large window). This architecture is able to run both the
memory-bound and processor-bound applications well. When the
design is more constrained, we can only meet the needs of each
application through heterogeneous designs that are customized to
subsets of the applications.

We see these same trends in Figure 4, which shows results for
four other area budgets. There is significant benefit to a diversity
of cores as long as either area or power are reasonably constrained.
For a power budget of 40W, a heterogeneous CMP outperforms the
best homogeneous CMP by 8% when the area budget is 50mm?
and by 10% when the budget is 30mm?. A 11% improvement is
possible for an area budget of 20msm? and a power budget of 30W.

The power and area budgets also determine the amount of di-
versity needed for a multi-core architecture. In general, the more
constrained the budget, the more benefits are accrued due to in-
creased diversity. For example, considering the all different results
in Figure 3, while having 4 core types results in the best perfor-
mance when the power limit is 30W (17% improvement over the
best homogeneous CMP), two core types (or in some cases, one)
are sufficient to get more than 99% of the potential benefits for
higher power limits. In some of the regions where moderate diver-
sity is sufficient, two unique cores not only match configurations
with higher diversity, but even beat them. In cases where higher
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Figure 4: Throughput for all-different workloads for an area budget of (left to right) 20mm?, 30mm?, 50mm?, and 60mm?.

diversity is optimal, the gains must still be compared against the
design and test costs of more unique cores. For example, in the
example above, the marginal performance of 4 core types over the
best 2-type result is 3%, and may not justify the extra effort. Go-
ing from one core type to two core types, however, results in 14%
performance improvement and presents a more compelling case.

Our results, then, show that while having two core types is suf-
ficient for getting most of the potential out of moderately power-
limited designs, increased diversity results in significantly better
performance for highly power-limited designs. These results un-
derscore the increasing importance of single-ISA heterogeneous
multi-core architectures for current and future processor designs.
As designs become more aggressive, we will want to place more
cores on the die (placing area pressure on the design), and power
budgets per core will likely tighten even more severely.

Another way to interpret these results is that heterogeneous de-
signs dampen the effects of constrained power budgets significantly.
For example, in the 40mm? results, both homogeneous and hetero-
geneous solutions provide good performance with a SOW budget.
However, the homogeneous design loses 9% performance with a
40W budget and 23% with a 30W budget. With a heterogeneous
design, we can drop power to 40W with only a 2% penalty and
down to 30W (a 40% power savings) with only a 9% performance
loss.

Perhaps more illuminating than the raw performance of the best
designs is what architectures actually provide the highest perfor-
mance for a given area and power budget. We observe that there
can be a significant difference between the cores of the best het-
erogeneous multiprocessor and the cores constituting the best ho-
mogeneous CMP. That is, the best heterogeneous multiprocessors
cannot be constructed only by making slight modifications to the
best homogeneous CMP design. Rather, they need to be designed
from a clean slate. Consider, for example, the best multiprocessors
for an area budget of 40mm? and a power budget of 40W. The
best homogeneous CMP consists of single-issue 000_16_16_s_|
cores (out-of-order, 16K Icache, 16K Dcache, few functional units,

large window). On the other hand, the best heterogeneous CMP
with two types of cores, for all different workloads, consists of two
single-issue in-order cores with 8KB L1 caches ( 10_8_8_s) and two
single-issue out-of-order cores with 64KB ICache, 32KB DCache
and double the number of functional units (000_64_32_1.s).

A consistent observation also is the reliance on non-monotonicity.
In several of our best heterogeneous configurations, we see that no
core is a subset of any other core. For example, when the power
budget is 30W, the best heterogeneous CMP for two core types for
all same workloads consists of superscalar in-order cores (issue-
width=2) and scalar out-of-order cores (issue-width=1), and out-
performs the best homogeneous CMP by 4%. Even when all the
cores are different, the best multiprocessor for all different work-
loads consists of a collection of one in-order core with 16KB L1
caches (10_16_16_s), one out-of-order core with 32KB ICache and
16KB DCache (000_32_16_s_s), one in-order core with 32KB L1
caches (10_32_32_s), and one out-of-order core with 64KB ICache
and 16KB DCache (O00_64_16_s_s). We explore this further in
Section 6.3.

To summarize, the results show that the best heterogeneous CMP
is not constructed of cores that make good general-purpose unipro-
cessor cores, or even those cores that would appear in good ho-
mogeneous multiprocessor architectures. Rather, the best way to
design a heterogeneous CMP is by tuning each individual core to
a class of applications with common characteristics — we see this
because the best designs typically contain cores poorly suited for
some applications, but these designs will not have all cores poorly
designed for a particular application. Such processors are advanta-
geous even for completely homogeneous workloads and their ben-
efits keep increasing as area and power budgets get tighter.

Note that all our results (even in the following sections) have
been presented with various cutoff points (area/power budgets) for
the ease of visualization. We analyzed the complete continuous
data space, however, and also looked at finer intervals, to ensure
that our conclusions were not particular to the cutoffs shown in
these graphs.
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6.3 _(guantifyinginefficiencyduetomonotonic-
ity

Because all previous heterogeneous proposals either used dif-
ferent generations of the same family, or frequency scaling, they
represent heterogeneous design methodologies that would fail to
exploit non-monotonicity. Figure 5 compares the best monotonic
designs against the best non-monotonic designs. We see that for
the all-same workload, the benefits from non-monotonic configu-
rations is small. However, with the heterogeneous workload, the
non-monotonic designs outperform the monotonic much more sig-
nificantly. The best non-monotonic design with 2 core types out-
performs the best corresponding monotonic design by 7.5% and
the best homogeneous CMP design by 15.4%. Also, while in-
creasing diversity keeps increasing processor performance for non-
monotonic designs, performance peaks at 3 core types for mono-
tonic designs.

More generally (results not shown here), we find that the cost of
monotonicity in terms of performance is greater when budgets are
constrained. In fact, diversity beyond two core types has benefits
for non-monotonic designs only for very constrained power and
area budgets.

6.4 Varying Thread-Level Parallelism

While all our studies are done for 4-core processors, it is unre-
alistic to assume that the processor will always have at least four
threads to run. Thus, we would like the same processor to run effi-
ciently with thread-level parallelism (TLP) less than four.

Figure 6 shows the performance of the best derived 4-core pro-
cessors (area budget = 40mm?2, power budget = 30W) when
fewer threads are running. Thus, we optimize the cores for 4 threads,
but run with fewer threads than the processor was designed for. As
we can see, a heterogeneous processor designed for 4 threads con-
tinues to have benefits over the corresponding homogeneous pro-
cessor even when fewer threads are run. A heterogeneous processor
with 4 core types, for example, outperforms the best homogeneous
4-core design by 18.6% when there is only a single thread running.

For all levels of TLP, the gradation among the processors remain
the same. In fact, the relative performance increases with fewer
threads, even though the processor was designed assuming a TLP
of 4. Because the four cores are customized to particular thread
characteristics, threads are even better at finding the right core to
run when there is less competition for cores. We observed similar
results for other budgets as well.

We also investigate the effect of customizing a 4-core processor
for a TLP different than the number of cores. Figure 7 shows the
results. When designing for two threads or three threads, we actu-
ally assumed a mix of threading levels (1, 2, 3, or 4 threads) such
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Figure 6: Performance of a 4-core processor designed for 4
threads when fewer threads are running

that the average TLP was 2 or 3, respectively. Here we see that the
benefits of heterogeneity are definitely more pronounced when the
machine is designed for about the same threading level that is run-
ning, particularly with the all-same workload. In these particular
experiments, we see nearly a 40% advantage from heterogeneity.

Of particular interest is the marked gain incurred by a single
thread (TLP=1) when going from 2 to 3 unique core types. It would
not have been too surprising if the best 1-thread heterogeneous pro-
cessor had one big monolithic core which ran everything well, and
abunch of tiny cores never used. But instead, the best single-thread
designs were more balanced and non-monotonic. This can be seen
in these graphs, simply because having three cores types was better
than two — in the case of the monolithic design, two would have
been sufficient. Thus, we see here that we can get better single-
thread performance with heterogeneous cores than with the largest
monolithic core we are considering in this study.

6.5 Efficient Search Techniques

All the previous results were arrived at by evaluating every point
in the search space — i.e. using exhaustive search. The reported
best multiprocessors are indeed the best multiprocessors out of the
ones considered. However, the full search considers over 2.2 bil-
lion distinct multiprocessor options. Then, each multiprocessor is
evaluated on thousands of 4-thread workload permutations. As a
result, search was slow. Additionally, this methodology is not scal-
able. In particular, the methodology becomes impractical when we
increase the number of cores on die, the number of distinct core
configurations considered, or the application set used to evaluate
the architecture.

In those cases, a more efficient search algorithm is needed to
navigate the design space. That is, instead of considering every
multiprocessor design, one can evaluate only a subset of the space
(e.g., a path through the space, seeking increasingly good designs).
The choice of the subset determines the accuracy of evaluation.

As an example, we used a simple well-known search algorithm,
hill climbing [18], to re-explore multiprocessors with an area bud-
get of 40mm? and a power budget of 30W. The starting point was
the four simplest cores, and we then made modifications to the
multiprocessor, one at a time, such that the chosen modification
resulted in the highest incremental performance per unit area out of
all the incremental modifications possible. The modifications are
made in small steps. Also, a change once made is never undone.
This has the danger of the search getting stuck in local maxima, but
results in much faster searches than generalized hill climbing [18]
where the changes can be undone. The search stops when the avail-
able area budget or power budget is exceeded. We observed that
the best heterogeneous multiprocessor yielded by hill climbing is
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11% better that the best homogeneous CMP found using exhaus-
tive search and is only 4.5% worse than the best heterogeneous
CMP found using exhaustive search. Also, 86% fewer architec-
tures were evaluated for this search. It is the subject of future work
to experiment with other search algorithms, with which we hope to
approach the effectiveness of exhaustive search more closely.

Note that search algorithms can be used even for fast design
space exploration for uniprocessors or homogeneous CMPs using
the same methodology we use for arriving at good heterogeneous
multi-core architectures.

7. CONCLUSIONS

This is the first attempt to look at the design of cores for a hetero-
geneous CMP. The goal is to determine how to do good heteroge-
neous CMP design for a given set of workloads and given area and
power budgets. We try to identify the characteristics of the cores of
a heterogeneous chip multiprocessor for the highest area or power
efficiency, and quantify the benefits that can be obtained by doing a
more custom design from the ground up. We also present a method-
ology for the design and optimization of the constituent processor
cores given a set of target applications, as well as specific design
budgets. We call these cores non-monotonic if their performance is
not fully ordered over a range of different applications.

In contrast to previous work, we show that the best way to de-
sign a heterogeneous CMP is not to find individual cores that are
well suited for the entire universe of applications, but rather to
tune the cores to different classes of applications. We find that
customizing cores to subsets of the workload results in processors
that have greater performance and power benefits than previously
proposed heterogeneous designs. An example such design outper-
formed the best homogeneous CMP design by 15.4% and the best
fully customized monotonic design by 7.5%. There were perfor-
mance and power improvements even for fully homogeneous work-
loads and for single-threaded workloads. Benefits are even greater
when power and area budgets are increasingly constrained. Perfor-
mance improvements of up to 40% are shown. Given current trends
in processor design, we expect power to become increasingly con-
strained in the future, even in desktop and server markets. This
means that the value of customizing core architecture as well as the
benefits of aggressive heterogeneity will only increase with time.
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APPENDIX

Our results assume that the performance of a multiprocessor is
simply the sum of the single-thread performance of the individ-
ual cores. Our confidence in this methodology stems from the fact
that each core on the multiprocessor gets a private 1IMB 4-way
L2 cache and a private memory channel, that we are using multi-
programmed, not parallel, workloads, and that the SPEC bench-
marks (and others used in the study) do not generate heavy off-chip
traffic. In this section, we validate the accuracy of this assumption
with full multithreaded simulation of particular points, accounting
for interactions beyond the L2 cache.

Less obvious is whether these results, and the methodology we
follow, applies to the case where L2 caches are shared and interac-
tions between cores are greater. We cannot fully validate all results
without full multithreaded simulation of all configurations. Thus,
we reduce the full validation to two questions.

——assumed methodology

—=—private L2 simulation
2 6 —4—shared L2 simulation

1coretype  2core-types  3core-types 4 core-types

Figure 8: Comparing the results using assumed methodology
against full simulation results: area budget = 40mm?, power
budget = 30W

First, is the performance of the configurations found to be “best”
accurate, particular with respect to the relative performance of ho-
mogeneous and heterogeneous designs? Second, is the performance
ordering of configurations competing for the designation of “best”
configuration preserved with more accurate simulation?

To answer the first question, we consider the highest perform-
ing multiprocessors for various number of core types for an area
budget of 40mm? and a power budget of 30W. We performed full
simulation for the four multiprocessors for various 4-threaded all
different workloads. We performed simulations assuming that each
core has a private 1MB 4-way L2 cache. We also performed simu-
lations assuming that all cores shared a 4MB, 4-banked 4-way L2
cache. Figure 8 shows the results.

As can be seen from the graph, the relative ordering of the four
multiprocessors remains the same. In fact, the simulations assum-
ing private L2 caches lies on top of the line drawn using the method-
ology assumed in the paper. Even when the L2 cache is shared, the
average performance differs by no more than 2%.

For checking the second condition, we chose 5 multiprocessors
with two core-types whose performance, as determined by the as-
sumed methodology, fell within the top 50 percentile. The mul-
tiprocessors are chosen such that they are equally spread through
that range (one from the 90-100th percentile, one from the 80-90th,
etc.). Then we performed full simulation for those multiprocessors
and compared them against the performance of the multiprocessors
using the assumed methodology. We found that the relative order-
ing of these multiprocessors in terms of performance remains the
same in all three cases (performance using assumed methodology,
full simulation assuming private L2 caches and full simulation as-
suming a shared L2 cache). We considered other datapoints as well
and observed no significant difference in the trends or analysis.



