A DISCIPLINE
OF PROGRAMMING

EDSGER W. DIJKSTRA

Burroughs Research Fellow,
Professor Extraordinarius,
Technological University, Eindhoven

PRENTICE-HALL, INC.

ENGLEWOOD CLIFFS, N.J,

]7 AN EXERCISE ATTRIBUTED
TO R.W. HAMMING

The way the problem reached me was: “To generate in increasing order
the sequence 1,2,3,4,5,6,8,9, 10,12, ... of all numbers divisible by no
primes other than 2, 3, or 5.” Another way of stating which values are in the
sequence is by means of three axioms:

Axiom 1. The value / is in the sequence.
Axiom 2. If x is in the sequence, so are 2+ x, 3 * x, and 5 * x,
Axiom 3, The sequence contains no other values than those that

belong to it on account of Axioms 7 and 2.

(We leave to the number theorists the task of establishing the equivalence of
the two above definitions.)

We include this exercise because its structure is quite typical for a large
class of problems. Being interested only in terminating programs, we shall
make a program generating only the, say, first 1000 values of the sequence.
Let

PO(n, g) mean: the value of “g” represents the ordered set of the first “n”
values of the sequence.

Then Axiom 1 tells us that [is in the sequence and, as 2 * x, 3 * x, and 5 * x
are functions whose value is > x for x > 0, Axiom 2 tells us that I is the
minimum value whose membership of the sequence can be established on
account of the first two axioms. Axiom 3 then tells us that J is the minimum
value occurring in the sequence and therefore P0(n, q) is easily established for
n = I:“g” then contains the value I only. The obvious program structure is:

129

130 AN EXERCISE ATTRIBUTED TO R.W. HAMMING

“establish PO(n, g) for n = 17;
do n 5= 1000 —

“increase n by 1 under invariance of PO(n, ¢)”
od

Under the assumption that we can extend a sequence with a value “xnext”,
provided that the value “xnexs” is known, the main problem of “increase n
by I under invariance of P0(n, q)” is how to determine the value “xnext”.
Because the value [is already in g, xnext > I, and xnext’s membership of
the sequence must therefore rely on Axiom 2. Calling the maximum value
occurring in g “q.high”, xnext is the minimum value > g¢.high, that is, of the
form 2 * x or 3 % x or 5 * x such that x occurs in the sequence. But because
2% x, 3% x, and 5 * x are all functions whose value is > x for x > 0, that
value of x must satisfy x << xnext; furthermore, x cannot satisfy x > ¢.high,
for then we would have

q.high < x < xnext

which would contradict that xnext is the minimum value > q.high. Therefore
we have x <{ q.high, i.e. x must already occur in ¢, and we can sharpen our
definition of xnext: xnext is the minimum value > q.high, that is of the form
2 x x or 3 x x or 5 * x, such that x occurs in g. (It is for the sake of the above
analysis that we have initialized PO(n, q) for n = 1; initialization for n = 0
would have been just as easy, but then g.high would not be defined.)

A straightforward implementation of the above analysis would lead to
the introduction of the set ggq, where gq consists of all values xx > g.high,
such that xx can be written as

xx = 2% X, with x in g,
or as

xx =3xx, with x in g,
or as

Xx =5 * X, with x in ¢

The set gq is nonempty and xnext would be the minimum value occurring
in it. But upon closer inspection, this is not too attractive, because the adjust-
ment of gg would imply (in the notation of the previous chapter)

qq:= (9q = {xnext}) + {2 » xnext, 3 x xnext, 5 * xnext}

where the “-+” means “forming the union of two sets”. Because we have to
determine the minimum value occurring in gg, it would be nice to have the
elements of g ordered; forming the union in the above adjustment would
then require an amount of reshuffling, which we would like to avoid.

A few moments of reflection, however, will suffice for the discovery that
we do not need to keep track of the whole set gg, but can select xnext as the
minimum value occurring in the much smaller set

AN EXERCISE ATTRIBUTED TO R.W. HAMMING 131

999 = {x2} + {x3} + {x5},
where

x2 is the minimum value > g.high, such that x2 = 2 x
and x occurs in g,

x3 is the minimum value > g.high, such that x3 =3 x x
and x occurs in g and

x5 is the minimum value > q¢.high, such that x5 = 5* x
and x occurs in g.

The above relation between g, x2, x3, and x5 is denoted by Pl(g, x2, x3, x5).
A next sketch for our program is therefore:

“establish PO(n, q) for n = 17”;
do n = 1000 —
“establish PI(g, x2, x3, x5) for the current value of ¢”;
“increase n by I under invariance of PO(n, g), i.e.
extend g with min(x2, x3, x5)”
od

A program along the above lines would be correct, but now “establish
Pi(g, x2, x3, x5) for the current value of ¢” would be the nasty operation,
even if —what we assume— the elements of the ordered set g are as accessible
as we desire. The answer to this is a standard one: instead of computing x2,
x3, and x5 as a function of ¢ afresh when we need them, we realize that the
value of ¢ only changes “slowly” and try to “adjust” the values, which are a
function of g, whenever ¢ changes. This is such a standard technique that it
is good to have a name for it; let us call it “taking the relation outside (the
repetitive construct)”. Its application is reflected in the program of the follow-
ing structure:

“establish PO(n, q) forn = I1”;
“establish PI(g, x2, x3, x5) for the current value of ¢”;
do n == 1000 —
“increase n by I under invariance of PO(n, q), i.e.
extend g with min(x2, x3, x5)”;
“re-establish PI(g, x2, x3, x5) for the new value of ¢g”
od R

The re-establishment of PI(g, x2, x3, x5) has to take place after extension
of g, i.e. after increase of g.high; as a result, the adjustment of x2, x3, and x5
is either the empty operation, or an increase, viz. a replacement by the corre-
sponding multiple of a higher x from g. Representing the ordered set g by

132 AN EXERCISE ATTRIBUTED TO R.W. HAMMING

means of an array ag, i.e. as the values ag(I) through aq(n) in monotonically
increasing order, we introduce three indices 72, i3, and i5, and extend PI with

...and x2 = 2 * gg(i2) and x3 = 3 * aq(i3) and x5 = 5 * aq(i5)

Our inner block, initializing the global array variable aq with the desired
final value could be:

begin virvar ag; privar i2, i3, i5, x2, x3, x5;
aq vir int array ;= (I, I); {PO established}
12 vir int, i3 vir int, iSvir int:= 1,1, 1,
x2 vir int, x3 vir int, x5 vir int:= 2, 3, 5; {PI established}
do ag.dom = 1000 —
if x3 > x2 < x5 — aq:hiext(x2)
0 x2 > x3 < x5 — aq:hiext(x3)
I x2 > x5 < x3 — aq:hiext(x5)
fi {ag.dom has been increased by I under invariance of P0};
do x2 < aq.high — i2:=i2 4+ 1; x2:= 2 * aq(i2) od;
do x3 < aq.high — i3:=i3 + I; x3:= 3 * aq(i3) od;
do x5 < aq.high— i5:=i5 + I; x5:= 5 * aq(i5) od
{PI has been re-established}
od
end

In the above version it is clearly expressed that after re-establishing PI
we have x2 > aq.high and x3 > aq.high and x5 > aq.high. Apart from that
we could have used “. .. = aq.high” instead of “. .. << aq.high” as well.

Note 1. In the last three inner repetitive constructs each guarded state-

ment list is selected for execution at most once. Therefore, we could have

coded them

if x2 = aq.high — i2:=i2 + 1; x2:= 2 x aq(i2)
| x2 > aq.high — skip
fi; etc.

When I start to think about this choice, I come out with a marked pre-
ference for the repetitive constructs, for what is so particular about the
fact that a repetition terminates after zero or one execution as to justify
expression by syntactic means ? Very little, I am afraid. Any hesitation to
recognize “zero or one times” as a special instance of “at most k times”
is probably due to our linguistic inheritance, as all Western languages
distinguish between singular and plural forms. (If we had been classical
Greeks (i.e. used to thinking in terms of a dual form as well) we might
have felt obliged to introduce in addition special syntactical gear for

AN EXERCISE ATTRIBUTED TO R.W. HAMMING 133

expressing termination after at most two executions!) To end in “Updat-
ing a sequential file” with

do xx.norm — newfile:hiext(xx); xx:setabnorm od
instead of with
if xx.norm — newfile :hiext(xx) [non xx.norm — skip fi

would, in a sense, have been more “honest™, for the output obligation as
expressed by xx.norm has been met. (End of note 1.)

Note 2. The last three inner repetitive constructs could have been com-
bined into a single one:

do x2 < aq.high — i2:=i2 4+ 1; x2:= 2 * aq(i2)
| x3 < aq.high — i3:= i3 + 1; x3:= 3 * aq(i3)
0 x5 < aq.high — i5:=i5 + 1; x5:= 5 * aq(i5)
od

I prefer, however, not to do so, and not to combine the guarded com-
mands into a single set when the execution of one guarded statement list
cannot influence the truth of other guards from the set. The fact that the
three repetitive constructs, separated by semicolons, now appear in an
arbitrary order does not worry me: it is the usual form of over-specifica-
tion that we always encounter in sequential programs prescribing things
in succession that could take place concurrently. (End of note 2.)

The exercise solved in this chapter is a specific instance of a more general

problem, viz. to generate the first V values of the sequence given axiomatically

by

Axiom]. The value] is in the sequence.

Axiom 2. If x is in the sequence, so are f(x), g(x), and A(x), where
/g, and h are monotonically increasing functions with the
property f(x) > x, g(x) > x, and A(x) > x.

Axiom 3. The sequence contains no other values than those that
belong to it on account of Axioms 7 and 2.

Note that if nothing about the functions f, g, and / were given, the prob-

lem could not be solved!

1

EXERCISES

Solve the problem if Axiom 2 is replaced by:
Axiom 2. If x is in the sequence, so are f(x) and g(x), where fand g have
the property f(x) > x and g(x) > x.

134 AN EXERCISE ATTRIBUTED TO R.W. HAMMING

2. Solve the problem if Axiom 2 is replaced by:

Axiom 2. If x and y are in the sequence, so is f(x,), where f has the
properties
1 f(x,») > x

2. (Y1 > y2) = (f(x, y1) > f(x,y2))
(End of exercises.)

The inventive reader who has done the above exercises successfully can
think of further variations himself,

